Item Response Theory for NLP EACL2024 Tutorial, 21st March 2024

John P. Lalor, Pedro Rodriguez, João Sedoc, Jose Hernandez-Orallo

https://eacl2024irt.github.io/

Tutorial webpage: eacl2024irt.github.io

- Slides
- Jupyter notebooks
- Reading list

- John Lalor, University of Notre Dame
- Pedro Rodriguez, Meta AI FAIR
- Joao Sedoc, New York University
- Jose Hernandez-Orallo, Universitat Politècnica de València and the Leverhulme Centre for the Future of Intelligence, University of Cambridge, UK

- Evaluation in NLP
- $\cdot\,$ Introduction to IRT
- Break (15 minutes)
- IRT in NLP
- Break (15 minutes)
- Advanced Topics and Opportunities for Future Work
- Conclusion

• Next section: Evaluation in NLP

Item Response Theory for NLP EACL2024 Tutorial, 21st March 2024

John P. Lalor, Pedro Rodriguez, João Sedoc, Jose Hernandez-Orallo

https://eacl2024irt.github.io/

Item Response Theory for NLP EACL2024 Tutorial, 21st March 2024 Part 1. Evaluation for NLP

 $\textbf{João Sedoc}^1$

¹ New York University

https://joaosedoc.com

What Do We Evaluate in NLP?

EVALUATIONS ARE AT SEVERAL LEVELS

1) System-level evaluations

• This is probably the most common evaluation type (MT, Dialog, NLI, etc...)

2) Machine learning method evaluations

- E.g., LSTM vs Transformer
- 3) Metrics
 - E.g., BLEU, BERTScore, etc

4) Annotations

Annotation error estimates

5) Data

• Quality, domain similarity, toxicity

SYSTEM EVALUATIONS

- 1. Extrinsic task based evaluation
- 2. Intrinsic evaluation
- 3. Human evaluation
- 4. Automatic metric evaluation
- 5. A/B testing
- 6. Error analysis

From Huang et al., 2019, "Challenges in Building Intelligent Open-Domain Systems"

From Huang et al., 2019, "Challenges in Building Intelligent Open-Domain Systems"

From Huang et al., 2019, "Challenges in Building Intelligent Open-Domain Systems"

From Huang et al., 2019, "Challenges in Building Intelligent Open-Domain Systems"

Key

COMMON TASK FRAMEWORK & LEADERBOARDS

There is general agreement that these competitive evaluations had a striking and beneficial effect on the performance of various systems tested over the years. However, it is also recognized (albeit less generally) that these evaluation experiments also had the, less beneficial, effect that the participating systems focused increasingly more narrowly on those few parameters that were measured in the evaluation, to the detriment of more general properties.

- Schwitter et al. 2000

Focusing on headline state-of-the-art numbers "provide(s) limited value for scientific progress absent insight into what drives them" and where they fail.

- Lipton and Steinhardt, 2019

LOTS OF LEADERBOARDS

	SuperGLUE SuperGLUE			Paper > Code	📑 Ta	sks 🤦	Leade	rboard	1 i F/	AQ 🟦	Diagno	stics 4	💋 Su	bmit	Login
				Leaderboa	rd Ve	rsion	: 2.0								
	Rank	Name	Model	URL	Score	BoolQ	СВ	COPA	MultiRC	ReCoRD	RTE	WiC	WSC	AX-b	AX-g
	1	JDExplore d-team	Vega v2		91.3	90.5	98.6/99.2	99.4	88.2/62.4	94.4/93.9	96.0	77.4	98.6	-0.4	100.0/50.0
-	2	Liam Fedus	ST-MoE-32B		91.2	92.4	96.9/98.0	99.2	89.6/65.8	95.1/94.4	93.5	77.7	96.6	72.3	96.1/94.1
	3	Microsoft Alexander v-team	Turing NLR v5	2	90.9	92.0	95.9/97.6	98.2	88.4/63.0	96.4/95.9	94.1	77.1	97.3	67.8	93.3/95.5
	4	ERNIE Team - Baidu	ERNIE 3.0	2	90.6	91.0	98.6/99.2	97.4	88.6/63.2	94.7/94.2	92.6	77.4	97.3	68.6	92.7/94.7
	5	Yi Tay	PaLM 540B		90.4	91.9	94.4/96.0	99.0	88.7/63.6	94.2/93.3	94.1	77.4	95.9	72.9	95.5/90.4
				— 1											

LOTS OF LEADERBOARDS

SQUAD2.0 The Stanford Question Answering Dataset

What is SQuAD?

Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable.

SQuAD2.0 combines the 100,000 questions in SQuAD1.1 with over 50,000 unanswerable questions written adversarially by crowdworkers to look similar to answerable ones. To do well on SQuAD2.0, systems must not only answer questions when possible, but also determine when no answer is supported by the paragraph and abstain from answering.

Explore SQuAD2.0 and model predictions

SQuAD2.0 paper (Rajpurkar & Jia et al. '18)

SQuAD 1.1, the previous version of the SQuAD dataset, contains 100,000+ question-answer pairs on 500+ articles.

Explore SQuAD1.1 and model predictions

SQuAD1.0 paper (Rajpurkar et al. '16)

Leaderboard

SQuAD2.0 tests the ability of a system to not only answer reading comprehension questions, but also abstain when presented with a question that cannot be answer based on the provided paragraph.

Rank	Model	EM	F1
	Human Performance	86.831	89.452
	Stanford University		
	(Rajpurkar & Jia et al. '18)		
1	SA-Net on Albert (ensemble)	90.724	93.011
Apr 06, 2020	QIANXIN		
2	SA-Net-V2 (ensemble)	90.679	92.948
May 05, 2020	QIANXIN		
2	Retro-Reader (ensemble)	90.578	92.978
Apr 05, 2020	Shanghai Jiao Tong University		
	http://arxiv.org/abs/2001.09694v2		
3	ATRLP+PV (ensemble)	90.442	92.877
Jul 31, 2020	Hithink RoyalFlush		
3	ELECTRA+ALBERT+EntitySpanFocus (ensemble)	90.442	92.839
May 04, 2020	SRCB_DML		
4	ELECTRA+ALBERT+EntitySpanFocus (ensemble)	90.420	92.799
Jun 21, 2020	SRCB_DML		
5	ALBERT + DAAF + Verifier (ensemble)	90.386	92.777
Mar 12, 2020	PINGAN Omni-Sinitic		

nsion nswered									
F1	20								
89.452	2.0								
93.011	СВ	СОРА	MultiRC	ReCoRD	RTE	WiC	WSC	AX-b	AX-g
92.948	98.6/99.2	99.4	88.2/62.4	94.4/93.9	96.0	77.4	98.6	-0.4	100.0/50.0
92.978	96.9/98.0	99.2	89.6/65.8	95.1/94.4	93.5	77.7	96.6	72.3	96.1/94.1
92.877	95.9/97.6	98.2	88.4/63.0	96.4/95.9	94.1	77.1	97.3	67.8	93.3/95.5
92.839	98.6/99.2	97.4	88.6/63.2	94.7/94.2	92.6	77.4	97.3	68.6	92.7/94.7
92.799	04.4/00.0		00 7/00 0	04.0/00.0	04.4	4	05.0	70.0	05 5/00 4
92.777	94.4/96.0	99.0	88.7/63.6	94.2/93.3	94.1	//.4	95.9	72.9	95.5/90.4

Leaderboard 🧯 FAQ 🟦 Diagnostics 🚀 Submit 🌒 Login

LOTS OF IFARFARAARA Spaces: == mteb/leaderboard © © like 2 * Running on CPU UPGRADE

App → Files and versions
Ommunity
2

Massive Text Embedding Benchmark (MTEB) Leaderboard. To submit, refer to the MTEB GitHub repository 🤗

- inford Qu Total Datasets: 56
 - Total Languages: 112
 - Total Scores: >2380
 - Total Models: 34

Overall	Bitext Mining	Classification	Clustering	Pair Classification	Retrieval	Reranking	STS	Summarization
---------	---------------	----------------	------------	---------------------	-----------	-----------	-----	---------------

Overall MTEB English leaderboard 👲

- Metric: Various, refer to task tabs
- Languages: English, refer to task tabs for others

Rank 🔺	Model 🔺	Embedding Dimensions	Average (56 Adatasets)	Classification Average (12 A datasets)	Clustering Average (11 datasets)	Pair Classification Average (3 datasets)	Reranking Average (4 datasets)	Retrieval Average (15 datasets)	STS Average (10 datasets)
1	<u>sentence-t5-</u> <u>xxl</u>	768	59.51	73.42	43.72	85.06	56.42	42.24	82.63
2	<u>gtr-t5-xxl</u>	768	58.97	67.41	42.42	86.12	56.66	48.48	78.38
3	<u>SGPT-5.8B-</u> weightedmean- msmarco- specb-bitfit	4096	58.81	68.13	40.34	82	56.56	50.25	78.1

What is SQuAD?

Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable.

SQuAD2.0 combines the 100,000 questions in SQuAD1.1 with over 50,000 unanswerable questions written adversarially by crowdworkers to look similar to answerable ones. To do well on SQuAD2.0, systems must not only answer questions when possible, but also determine when no answer is supported by the paragraph and abstain from answering.

Explore SQuAD2.0 and model predictions

SQuAD2.0 paper (Rajpurkar & Jia et al. '18)

SQuAD 1.1, the previous version of the SQuAD dataset, contains 100,000+ question-answer pairs on 500+ articles.

Explore SQuAD1.1 and model predictions

SQuAD1.0 paper (Rajpurkar et al. '16)

🗄 📦 Linked Models 🛛 🗏 Linked Datasets

LOTS OF IFARFARADA Spaces: == mteb/leaderboard © Vike 2 * Running on CPU UPGRADE

App → Files and versions
Ommunity
2

The	St	tan	fo

Y LMSYS Chatbot Arena Leaderboard

Vote Blog GitHub Paper Dataset Twitter Discord

What is SQuAD?

Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable.

SQuAD2.0 combines the 100,000 questions in SQuAD1.1 with over 50,000 unanswerable questions written adversarially by crowdworkers to look similar to answerable ones. To do well on SQuAD2.0, systems must not only answer questions when possible, but also determine when no answer is supported by the paragraph and abstain from answering.

Explore SQuAD2.0 and model predictions

SQuAD2.0 paper (Rajpurkar & Jia et al. '18)

SQuAD 1.1, the previous version of the SQuAD dataset, contains 100,000+ question-answer pairs on 500+ articles.

Explore SQuAD1.1 and model predictions

SQuAD1.0 paper (Rajpurkar et al. '16)

Arena Elo Full Leaderboard

Total #models: 73. Total #votes: 408144. Last updated: March 13, 2024.

Contribute your vote 📦 at <u>chat.lmsys.org</u>! Find more analysis in the <u>notebook</u>.

Rank	Model	<pre></pre>	■ 95% CI	🔹 Votes 🔺	Organization	License 🔺	Knowledge Cutoff
1	GPT-4-1106-preview	1251	+5/-4	48226	OpenAI	Proprietary	2023/4
1	GPT-4-0125-preview	1249	+5/-6	22282	OpenAI	Proprietary	2023/12
1	<u>Claude 3 Opus</u>	1247	+6/-6	14854	Anthropic	Proprietary	2023/8
4	<u>Bard (Gemini Pro)</u>	1202	+6/-7	12623	Google	Proprietary	Online
4	Claude 3 Sonnet	1190	+6/-6	14845	Anthropic	Proprietary	2023/8
5	<u>GPT-4-0314</u>	1185	+4/-6	27245	OpenAI	Proprietary	2021/9
7	<u>GPT-4-0613</u>	1159	+4/-5	43783	OpenAI	Proprietary	2021/9

LMSYS Chatbot Arena is a crowdsourced open platform for LLM evals. We've collected over 400,000 human preference votes to rank LLMs with the Elo ranking system.

E inked Models E Linked Datasets

SHARED TASKS

$English{\rightarrow}Czech$

Range	Ave.	Ave. z	System
1	91.2	0.335	HUMAN–C
2	90.9	0.279	Online-W
3	88.6	0.158	JDExploreAcad.
4-6	85.3	0.045	Online-B
4-6	87.1	0.041	Lan-Bridge
4-6	85.1	0.029	HUMAN-B
7-10	84.2	-0.059	CUNI-Bergamot
7-10	83.7	-0.074	CUNI-DocTransf.
7-10	84.0	-0.087	Online-A
7-10	83.2	-0.128	CUNI-Transf.
11-12	83.3	-0.258	Online-G
11-12	80.8	-0.310	Online-Y

SHARED TASKS

	En	nglish→	Cze	ch						
Range	Ave.	Ave. z	Sy	stem						
1	91.2	0.335	H	JMAN-C						
2	90.9	CodaL	.ab					Se	arch Competitions My Co	ompetitions Help Sign
3	88.6		Max	submissions total	: 999					
4-6	85.3									
4-6	87.1		×	Download CSV						
4-6	85.1							Results EMP		
7-10	84.2	_	#	User	Entries	Date of Last	Team Name	Averaged Pearson Correlations	Empathy Pearson Correlation	Distress Pearson Correlation
7-10	83.7	-	1	iavmundra		Entry				
7-10	84.0	_		Jaymanara	18	02/18/21	IITK@WASSA	0.533 (3)	0.558 (1)	0.507 (3)
7-10	83.2	-	2	justglowing	12	02/13/21	CompNA	0.554 (2)	0.554 (2)	0.554 (2)
11-12	83.3	_	3	atharvakulkarni	4	02/16/21	PVG@WASSA2021	0.557 (1)	0.517 (3)	0.597 (1)
11-12	80.8	_	4	vinid	8	02/17/21	MilaNLP	- (4)	- (4)	- (4)
			5	kanishksin	21	02/22/21	Phoenix	- (4)	- (4)	- (4)
								Results FMO		

SHARED TASKS

			kaggle
	E	nglish→Czo	
Range	Ave.	Ave. z Sy	Create
1	91.2	0.335 H	Home
2	90.9	CodaLab	Competitions
3	88.6	Ma	Datasets
4-6	85.3		Datasets
4-6	87.1	×	Models
4-6	85.1		Code
7-10	84.2		Discussions
7-10	83.7	- 1	Learn
7-10	84.0	-	More
7-10	83.2	²	
11-12	83.3	3	
11-12	80.8	4	
		5	

Fweet S	Search eet Sentiment Extraction rview Data Code Models Discussion Leaderboard Rules Search leaderboard ic Private		Late	Submission				
Overview	Data	Code	Models	Discussion	Leaderboard	Rules		
Q Sear	ch leaderb	ooard						
Public P	rivate							

Prize Winners

#	Δ	Team	Members	Score	Entries	Last	Solution
1	<u>^ 2</u>	Dark of the Moon		0.73615	279	4y	
2	^ 3	Y. O. & m.y. & hiromu	۱	0.73471	227	4y	
3	^ 1	Muggles united	۲	0.73332	190	4y	

LEADERBOARDS CAN IMPROVE

- 1. Questions with the Right Difficulty
- 2. Discriminative Questions
- 3. Minimize Ambiguity, Maximize Fairness
- 4. Don't be Overly Definitive
- 5. Be Flexible and Introspective

METHODS FOR RANKING

- 1. Average score
- 2. Z-scored ratings
- 3. Preference ranking
 - Bradley-Terry-Leech
 - Elo rating system
 - Trueskill
 - Item Response Theory

HUMAN / AUTOMATIC METRICS

Human evaluation

Expert judges (WOCHAT, Alexa)

Crowd-sourced (non-expert) judgments (DBDC)

A / B TESTING

🖻 Model A

Draft a professional email seeking your supervisor's feedback on the 'Quarterly Financial Report' you prepared. Ask specifically about the data analysis, presentation style, and the clarity of conclusions drawn. Keep the email short and to the point.

Subject: Request for Feedback on Quarterly Financial Report Dear [Supervisor's Name],

I hope this email finds you well. I am writing to seek your feedback on the Quarterly Financial Report that I prepared for our company. The report provides an overview of our financial performance for the past quarter, and I would greatly appreciate any comments or suggestions you may have about the data analysis, presentation style, and clarity of the conclusions drawn.

The report is a crucial part of our financial planning and decision-making, and I want to ensure that it meets the highest standards of accuracy and professionalism. Your expertise in the field of finance will be invaluable in guiding me towards improvement in these areas.

I have attached the report to this email for your reference. If you could provide your feedback within the next few days, I would be grateful.

Thank you in advance for your time and support.

Best regards,

[Your Name]

🖻 Model B

Draft a professional email seeking your supervisor's feedback on the 'Quarterly Financial Report' you prepared. Ask specifically about the data analysis, presentation style, and the clarity of conclusions drawn. Keep the email short and to the point.

Subject: Request for Feedback onQuarterly Financial Report Dear [Supervisor's Name],

I hope this email finds you well. I am writing to seek your feedback on the Quarterly Financial Report I prepared for the company. I am confident that the report provides valuable insights into our financial performance and would like to hear your thoughts on the data analysis, presentation style, and clarity of conclusions drawn.

Please let me know if you have any specific areas of concern or if there is any information you would like me to update or expand upon. I am eager to improve and ensure that our financial reports are as accurate and informative as possible.

Thank you for taking the time to read my email. I look forward to hearing from you soon. Best regards,

[Your Name]

👈 A is better

💙 Tie

👎 Both are bad

ERROR ANALYSIS

- 1. Categorize error types
- 2. Investigate sources
- 3. Identify possible explanations

Annotations

EVALUATION OF ANNOTATIONS

- 1. Inter-annotator agreement (IAA)
 - Cohen's Kappa
 - Krippendorff's alpha
 - Fleiss' Kappa

- 2. Accuracy, Precision/Recall/F-score
- 3. Consistency checks
- 4. Error Analysis

UNDERLYING DATA ANALYSIS

- 1. Quality of the examples
- 2. Difficulty of data
- 3. Usefulness for evaluation
- 4. Error Analysis

THANK YOU!

JOAO SEDOC http://joaosedoc.com/ jsedoc@nyu.edu

NEXT UP

Next Section: Introduction to IRT

Item Response Theory for NLP EACL2024 Tutorial, 21st March 2024

John P. Lalor, Pedro Rodriguez, João Sedoc, Jose Hernandez-Orallo

https://eacl2024irt.github.io/

Motivation

Introducing IRT

IRT Models with Artificial Crowds

The py-irt Package

Motivation
Natural language inference (NLI)

Premise	Hypothesis	Label	Difficulty
A little girl eating a sucker	A child eating candy	Entailment	easy
People were watching the tournament in the sta-	The people are sitting outside on the grass	Contradiction	hard
dium			
Two girls on a bridge dancing with the city skyline	The girls are sisters.	Neutral	easy
in the background			

Sentiment analysis (SA)

Phrase		Label	Difficulty
The stupidest, most insulting movie of 2002's first quarter.		Negative	easy
Still, it gets the job done - a sleepy afternoon rental.		Negative	hard
An endlessly fascinating, landmark movie that is as bold as anything the cine	na has seen in years.	Positive	easy
Perhaps no picture ever made has more literally showed that the road to h	ell is paved with good	Positive	hard
intentions.			

▶ The 😕 Open LLM Leaderboard aims to track, rank and evaluate open LLMs and chatbots.

😕 Submit a model for automated evaluation on the 😕 GPU cluster on the "Submit" page! The leaderboard's backend runs the great Eleuther Al Language Model Evaluation Harness - read more details in the "About" page!

🍟 LLM Benchmark 🛛 Metrics through time 📄 About 🛛 💋 Submit here!	
$\textbf{Q}_{\!$	Model types
Select columns to show	Pretrained Pretraine
🛛 Average 🚺 🖉 ARC 🖉 HellaSwag 🗳 MMLU 🖉 TruthfulQA 🖉 Winogrande	Precision
GSM8K OROP Type Architecture Precision Hub License	V float16 V bfloat16 V 8bit V 4bit V GPTQ V ?
#Params (B) Hub 💙 Available on the hub Model sha	Model sizes (in billions of parameters)
Show sated/orivate/deleted models	

T ∢∣≯	Model	Average 👖	ARC A	HellaSwag 🔺	MMLU 🔺	TruthfulQA	Winogrande 🔺	GSM8K ▲	DROP 🔺	^
•	TigerResearch/tigerbot-70b-chat-v2	69.76	87.03	82.83	66	75.4	79.16	46.02	51.9	
0	bhenrym14/platypus_yi_34b	68.96	68.43	85.21	78.13	54.48	84.06	47.84	64.55	
•	01-ai/Yi-34B	68.68	64.59	85.69	76.35	56.23	83.03	50.64	64.2	
•	chargoddard/Yi-34B-Llama 🖹	68.4	64.59	85.63	76.31	55.6	82.79	49.51	64.37	
0	MayaPH/Godzilla2-70B	67.01	71.42	87.53	69.88	61.54	83.19	43.21	52.31	

https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard

Differences in Questions

Source: Boyd-Graber and Börschinger (2020)

Introducing IRT

Psychometrics: study of quantitative measurement practices

- Building instruments for measurement (standardized tests)
- Development of theoretical approaches to measurement

Item Response Theory (IRT): measure latent traits of test-takers and test questions ("items")

OcollegeBoard

Also known as Rasch model

$$p(y_{ij} = 1 | b_i, \theta_j) = \frac{1}{1 + e^{-(\theta_j - b_i)}}$$

 θ_j : latent ability b_i : difficulty

$$p(y_{ij} = 1 | a_i, b_i, \theta_j) = \frac{1}{1 + e^{-a_i(\theta_j - b_i)}}$$

 θ_j : latent ability b_i : difficulty a_i : discriminability

$$p(y_{ij} = 1 | a_i, b_i, c_i, \theta_j) = c_i + \frac{1 - c_i}{1 + e^{-a_i(\theta_j - b_i)}}$$

 θ_j : latent ability b_i : difficulty a_i : discriminability c_i : guessing

$$p(y_{ij}=1|a_i,b_i,c_i,\theta_j)=\frac{\gamma_i}{1+e^{-a_i(\theta_j-b_i)}}$$

 θ_j : latent ability b_i : difficulty a_i : discriminability γ_i : feasibility $\begin{array}{c} 0.6 \\ 0.4 \\ 0.2 \\ -4 \\ -2 \\ 0 \\ -4 \\ -2 \\ \theta \end{array}$

4

0.8

Parameter Estimation

$$\begin{split} p(y_{ij} = 1 | b_i, \theta_j) &= \frac{1}{1 + e^{-a_i(\theta_j - b_i)}} \\ p(y_{ij} = 0 | b_i, \theta_j) &= 1 - p(y_{ij} = 1 | b_i, \theta_j) \end{split}$$

$$\begin{split} L &= \prod_{j=1}^{J} \prod_{i=1}^{I} p(Y_{ij} = y_{ij} | b_i, \theta_j) \\ q(\Theta, B) &= \prod_{j} \pi_j^{\theta}(\theta_j) \prod_{i} \pi_i^{b}(b_i) \end{split}$$

 $\cdot \ p(Y|B,\Theta)$ – model

 $\cdot \ q(\Theta,B)$ – guide (variational distribution)

Natesan et al. (2016)

Intro to IRT notebook 1 – 2_IntroToIrt.ipynb

Evaluating DNN Performance with IRT

Premise	Hypothesis	Label	Difficulty
A little girl eating a sucker	A child eating candy	Entailment	-2.74
People were watching the tourna-	The people are sitting outside	Contradiction	0.51
ment in the stadium	on the grass		
Two girls on a bridge dancing with	The girls are sisters.	Neutral	-1.92
the city skyline in the background			
Nine men wearing tuxedos sing	Nine women wearing dresses	Contradiction	0.08
	sing		
Phrase		Label	Difficulty

Thruse	Luber	Difficulty
The stupidest, most insulting movie of 2002's first quarter.	Negative	-2.46
Still, it gets the job done - a sleepy afternoon rental.	Negative	1.78
An endlessly fascinating, landmark movie that is as bold as anything the	Positive	-2.27
cinema has seen in years.		
Perhaps no picture ever made has more literally showed that the road to hell	Positive	2.05

is paved with good intentions.

Item Set	Ability Score	Percentile	Test Acc.	
"Easier"				
Entailment	-0.133	44.83%	96.5%	
Contradiction	1.539	93.82%	87.9%	
Neutral	0.423	66.28%	88%	
"Harder"				
Contradiction	1.777	96.25%	78.9%	
Neutral	0.441	67%	83%	

- Gathering human response patterns is expensive
- Can we use ensembles of models to gather response patterns?
- Even if we can, should we?

IRT Models with Artificial Crowds

Human-Machine Correlation

 $\cdot\,$ Spearman ρ (NLI): 0.409 (LSTM) and 0.496 (NSE) (Lalor et al., 2019)

Human-Machine Correlation

 \cdot Spearman ho (SA): 0.332 (LSTM) and 0.392 (NSE) (Lalor et al., 2019)

Difficulty Distribution

Source: Lalor et al. (2019)

IRT for Leaderboards (SQuAD)

• 1.9 million subject-item pairs

IRT for SQuAD

Source: Rodriguez et al. (2021)

The py-irt Package

{"subject_id": "pedro", "responses": {"q1": 1, "q2": 0, "q3": 1, "q4": 0}}
{"subject_id": "pinguino", "responses": {"q1": 1, "q2": 1, "q3": 0, "q4": 0}}
{"subject_id": "ken", "responses": {"q1": 1, "q2": 1, "q3": 1, "q4": 1}}
{"subject_id": "burt", "responses": {"q1": 0, "q2": 0, "q3": 0, "q4": 0}}

py-irt train 1pl data/data.jsonlines output/1pl/

```
{
    "ability": [
        -1.7251124382019043,
        -0.06789101660251617,
        1.6059941053390503,
        -0.20248053967952728
],
    "diff": [
        0.008014608174562454,
        9.654741287231445,
        -5.5452165603637695,
        -0.2792229950428009
],
```

```
"irt model": "1pl".
"item ids": {
  "0": "a2"
  "1": "a4"
  "2": "q1",
  "3": "a3"
},
"subject ids": {
  "0": "burt".
  "1": "pinguino",
  "2": "ken".
  "3": "pedro"
```


Intro to IRT notebook 2 – 2_pyirt_example.ipynb

Frank B Baker. 2001. The basics of item response theory. ERIC.

- Jordan Boyd-Graber and Benjamin Börschinger. 2020. What question answering can learn from trivia nerds. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 7422–7435, Online. Association for Computational Linguistics.
- John P. Lalor and Pedro Rodriguez. 2022. py-irt: A scalable item response theory library for python. INFORMS Journal on Computing.
- John P. Lalor, Hao Wu, and Hong Yu. 2016. Building an evaluation scale using item response theory. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 648–657, Austin, Texas. Association for Computational Linguistics.
- John P. Lalor, Hao Wu, and Hong Yu. 2019. Learning latent parameters without human response patterns: Item response theory with artificial crowds. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 4249–4259, Hong Kong, China. Association for Computational Linguistics.
- Prathiba Natesan, Ratna Nandakumar, Tom Minka, and Jonathan D Rubright. 2016. Bayesian prior choice in irt estimation using mcmc and variational bayes. Frontiers in psychology, 7:1422.
- Pedro Rodriguez, Joe Barrow, Alexander Miserlis Hoyle, John P. Lalor, Robin Jia, and Jordan Boyd-Graber. 2021. Evaluation examples are not equally informative: How should that change NLP leaderboards? In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 4486–4503, Online. Association for Computational Linguistics.

- Back in 15 minutes
- Next section: IRT in NLP

Item Response Theory for NLP EACL2024 Tutorial, 21st March 2024

John P. Lalor, Pedro Rodriguez, João Sedoc, Jose Hernandez-Orallo

https://eacl2024irt.github.io/

Introduction

Improving Model Training

Finding Annotation Error

Evaluation Metrics

Introduction

Overview of IRT Applications:

- Dataset Construction
- Model Training
- Evaluation
Basic assumptions of the data and parameterization we have:

- A dataset with items indexed by *i*.
- A set of subjects indexed by *j*.
- Responses *r_{ij}* from graded responses of subjects to each item.
- An IRT parameterization, e.g., one with item difficulty β_i , discriminability γ_i , and ability θ_j might assume:

$$p(r_{ij} = 1|eta_i, heta_j) = rac{1}{1 + e^{-\gamma_i(heta_j - eta_i)}}$$

IRT Applications: Example of Model Behavior

Given the previous information, IRT will yield estimates for chosen parameters, i.e.: item difficulty β_i , discriminability γ_i , and ability θ_j .

Consider two scenarios:

- What if the dataset is the training data?
- What if the dataset is a test set?

Improving Model Training

Data set filtering

- AVI: $|b_i| < \tau$
- UB: $b_i < \tau$
- PCUB: *pc_i* < τ

Source: Lalor et al. (2019)

- AVO: $|b_i| > \tau$
- LB: $b_i > \tau$
- PCLB: *pc_i* > τ

Task	Label	Item Text	Difficulty ranking		
			Humans	LSTM	NSE
SNLI	Con.	<i>P:</i> Two dogs playing in snow. <i>H:</i> A cat sleeps on floor	168	1	5
	Ent.	<i>P</i> : A girl in a newspaper hat with a bow is unwrapping an item. <i>H</i> : The girl is going to find out what is under the wrapping paper.	55	172	176
SSTB	Pos.	Only two words will tell you what you know when deciding to see it: Anthony. Hopkins.	9	103	110
	Neg.	are of course stultifyingly contrived and too stylized by half. Still, it gets the job done–a sleepy afternoon rental.	128	46	41

Finding Annotation Error

Test examples can be: too hard, discriminative, too easy, or erroneous ¹

How can we use IRT to identify each example type?

¹Boyd-Graber and Börschinger (2020)

- Examples that do not discriminate between good and bad subjects

- Examples that do not discriminate between good and bad subjects
- Example: Bad label \rightarrow all models get wrong

- Examples that do not discriminate between good and bad subjects
- Example: Bad label \rightarrow all models get wrong
- Example: Correctness is a coinflip

- Examples that do not discriminate between good and bad subjects
- Example: Bad label \rightarrow all models get wrong
- Example: Correctness is a coinflip
- Non-Example: Difficult example few models get correct

- Examples that do not discriminate between good and bad subjects
- Example: Bad label \rightarrow all models get wrong
- Example: Correctness is a coinflip
- Non-Example: Difficult example few models get correct
- What parameter could identify this?

- Examples that do not discriminate between good and bad subjects
- Example: Bad label \rightarrow all models get wrong
- Example: Correctness is a coinflip
- Non-Example: Difficult example few models get correct
- What parameter could identify this?
- We can use IRT discriminability γ_i to find bad examples!

• Run a simulation where:

- Run a simulation where:
- = 10 Subjects, Ability/Skill \sim U(-4,4)

- Run a simulation where:
- = 10 Subjects, Ability/Skill \sim U(-4,4)
- 1000 Items, Difficulty $\sim U(-4,4)$

- Run a simulation where:
- = 10 Subjects, Ability/Skill $\sim U(-4,4)$
- = 1000 Items, Difficulty \sim U(-4,4)
- Items have a 5% of being invalid

- Run a simulation where:
- = 10 Subjects, Ability/Skill $\sim U(-4,4)$
- = 1000 Items, Difficulty \sim U(-4,4)
- Items have a 5% of being invalid
- Responses for valid items: $r_{ij} = sigmoid(\theta_j \beta_i) > u, u \sim U(0, 1)$

- Run a simulation where:
- = 10 Subjects, Ability/Skill $\sim U(-4,4)$
- 1000 Items, Difficulty \sim U(-4,4)
- Items have a 5% of being invalid
- Responses for valid items: $r_{ij} = sigmoid(\theta_j \beta_i) > u, u \sim U(0, 1)$
- Responses for invalid items: $r_{ij} = u > .5, u \sim U(0, 1)$

- Run a simulation where:
- = 10 Subjects, Ability/Skill $\sim U(-4,4)$
- 1000 Items, Difficulty \sim U(-4,4)
- Items have a 5% of being invalid
- Responses for valid items: $r_{ij} = sigmoid(\theta_j \beta_i) > u, u \sim U(0, 1)$
- Responses for invalid items: $r_{ij} = u > .5, u \sim U(0, 1)$

- Run a simulation where:
- = 10 Subjects, Ability/Skill $\sim U(-4,4)$
- 1000 Items, Difficulty $\sim U(-4,4)$
- Items have a 5% of being invalid
- Responses for valid items: $r_{ij} = sigmoid(\theta_j \beta_i) > u, u \sim U(0, 1)$
- Responses for invalid items: $r_{ij} = u > .5, u \sim U(0, 1)$

Then, train a 3PL IRT model with py-irt

IRT Applications: 3PL Model

IRT Parameters

- Item Difficulty: $\beta_i \sim \text{Normal}$
- Item Discriminability: $\gamma_i \sim \text{LogNormal}$
- Subject Ability $\theta_i \sim \text{Normal}$

IRT Model

$$p(r_{ij}=1|eta_i,\gamma_i, heta_j)=rac{1}{1+{
m e}^{-\gamma_i(heta_j-eta_i)}}$$

IRT Parameters

- Item Difficulty: $\beta_i \sim \text{Normal}$
- Item Discriminability: $\gamma_i \sim \text{LogNormal}$
- Subject Ability $\theta_j \sim \text{Normal}$

IRT Model

$$p(r_{ij}=1|eta_i,\gamma_i, heta_j)=rac{1}{1+e^{-\gamma_i(heta_j-eta_i)}}$$

Note:

- Why γ_i ~ LogNormal? Following Vania et al. (2021), forces γ_i to be non-negative.
- Other variables are zero centered.

Sample Code

```
dataset = Dataset.from_jsonlines("/tmp/irt_dataset.jsonlines")
config = IrtConfig(
    model_type='tutorial', log_every=500, dropout=.2
)
trainer = IrtModelTrainer(
    config=config, data_path=None, dataset=dataset
)
trainer.train(epochs=5000, device='cuda')
```

IRT Applications: Simulation Results

Can we distinguish valid from invalid items based on discriminability γ_i ?

IRT Applications: Simulation Results

Can we distinguish valid from invalid items based on discriminability γ_i ?

In Rodriguez et al. (2021), we used a slightly different model to do this for SQuAD:

Differences

- Discriminability γ_i could be negative, which is inconvenient.
- Feasibility λ_i .

IRT Applications: Finding Annotation Error

Plotting IRT parameters:

Use IRT parameters to find partitions of data with annotation errors

Example:

One low difficulty questionwas wrong, because although the label says it is not answerable, it is answerable

IRT Applications: Finding Annotation Error

Use IRT parameters to find partitions of data with annotation errors

Things to note:

Negative discriminability identifies errors

Example of bad example identified by IRT

discriminability: -9.63 Difficulty: -0.479 Feasibility: 0.614 Mean Exact Match: 0.472 Wikipedia Page: Economic inequality Question ID: 572a1c943f37b319004786e3 **Ouestion**: Why did the demand for rentals decrease? **Official Answer**: demand for higher quality housing **Context**: A number of researchers (David Rodda, Jacob Vigdor, and Janna Matlack), argue that a shortage of affordable housing - at least in the US - is caused in part by income inequality. David Rodda noted that from 1984 and 1991, the number of quality rental units decreased as the demand for higher quality housing increased (Rhoda 1994:148). Through gentrification of older neighbourhoods, for example, in East New York, rental prices increased rapidly as landlords found new residents willing to pay higher market rate for housing and left lower income families without rental units. The ad valorem property tax policy combined with rising prices made it difficult or impossible for low income residents to keep pace.

Evaluation Metrics

Simple Idea: Instead of accuracy, use subject ability θ_i to rank.
Simple Idea: Instead of accuracy, use subject ability θ_i to rank.

• 10 Subjects, similar setup as before

- 10 Subjects, similar setup as before
- As before, 1,000 Test Examples

- 10 Subjects, similar setup as before
- As before, 1,000 Test Examples
- A set of 800 easy examples \sim U(-4,0), Validity Rate 95%

- 10 Subjects, similar setup as before
- As before, 1,000 Test Examples
- A set of 800 easy examples $\sim U(-4,0)$, Validity Rate 95%
- A set of 150 moderate examples ~ U(0,3), Validity Rate 90%

- 10 Subjects, similar setup as before
- As before, 1,000 Test Examples
- A set of 800 easy examples $\sim U(-4,0)$, Validity Rate 95%
- A set of 150 moderate examples ~ U(0,3), Validity Rate 90%
- A set of 50 hard examples $\sim U(3,4)$, Validity Rate 80%

Subjects sorted by True Ability

Abi	lity		Accu	racy	
True	IRT	Overall	Easy	Mod	Hard
-3.506	-12.1	0.194	0.218	0.093	0.100

- Subjects sorted by True Ability
- IRT Inferred Ability

Abi	lity		Accu	racy	
True	IRT	Overall	Easy	Mod	Hard
-3.506	-12.1	0.194	0.218	0.093	0.100

- Subjects sorted by True Ability
- IRT Inferred Ability
- Accuracy:

Abi	lity		Accu	racy	
True	IRT	Overall	Easy	Mod	Hard
-3.506	-12.1	0.194	0.218	0.093	0.100

- Subjects sorted by True Ability
- IRT Inferred Ability
- Accuracy:
 - Overall

Abi	lity		Accu	racy	
True	IRT	Overall	Easy	Mod	Hard
-3.506	-12.1	0.194	0.218	0.093	0.100

- Subjects sorted by True Ability
- IRT Inferred Ability
- Accuracy:
 - Overall
 - Easy subset

Abi	lity		Accu	racy	
True	IRT	Overall	Easy	Mod	Hard
-3.506	-12.1	0.194	0.218	0.093	0.100

- Subjects sorted by True Ability
- IRT Inferred Ability
- Accuracy:
 - Overall
 - Easy subset
 - Moderate subset

Abi	lity		Accuracy verall Easy Mod		
True	IRT	Overall	Easy	Mod	Hard
-3.506	-12.1	0.194	0.218	0.093	0.100

- Subjects sorted by True Ability
- IRT Inferred Ability
- Accuracy:
 - Overall
 - Easy subset
 - Moderate subset
 - Hard subset

Abi	lity		Accuracy		
True	IRT	Overall	Easy	Mod	Hard
-3.506	-12.1	0.194	0.218	0.093	0.100

- Subjects sorted by True Ability
- IRT Inferred Ability
- Accuracy:
 - Overall
 - Easy subset
 - Moderate subset
 - Hard subset
- What does the data show?

Abi	lity		Accu	racy	
True	IRT	Overall	Easy	Mod	Hard
-3.506	-12.1	0.194	0.218	0.093	0.100

The data shows:

 Variation in true/inferred ability and accuracy by subset → Asking the right question matters!

True	IRT	Overall	Easy	Mod	Hard
-3.506	-12.1	0.194	0.218	0.093	0.100
-3.000	-7.61	0.256	0.301	0.066	0.100
-2.645	-4.88	0.325	0.380	0.093	0.140
-1.214	0.348	0.543	0.650	0.113	0.120
-1.156	1.40	0.560	0.667	0.120	0.160
-0.748	2.68	0.602	0.712	0.146	0.200
-0.455	3.36	0.631	0.746	0.193	0.100
0.232	5.76	0.729	0.848	0.293	0.120
2.16	11.1	0.865	0.956	0.586	0.240
2.50	14.2	0.897	0.971	0.686	0.340

The data shows:

- Variation in true/inferred ability and accuracy by subset → Asking the right question matters!
- Fewer hard examples \rightarrow noisier subset.

True	IRT	Overall	Easy	Mod	Hard
-3.506	-12.1	0.194	0.218	0.093	0.100
-3.000	-7.61	0.256	0.301	0.066	0.100
-2.645	-4.88	0.325	0.380	0.093	0.140
-1.214	0.348	0.543	0.650	0.113	0.120
-1.156	1.40	0.560	0.667	0.120	0.160
-0.748	2.68	0.602	0.712	0.146	0.200
-0.455	3.36	0.631	0.746	0.193	0.100
0.232	5.76	0.729	0.848	0.293	0.120
2.16	11.1	0.865	0.956	0.586	0.240
2.50	14.2	0.897	0.971	0.686	0.340

The data shows:

- Variation in true/inferred ability and accuracy by subset → Asking the right question matters!
- Fewer hard examples \rightarrow noisier subset.
- Accuracy difference between best two subjects is not large.

True	IRT	Overall	Easy	Mod	Hard
-3.506	-12.1	0.194	0.218	0.093	0.100
-3.000	-7.61	0.256	0.301	0.066	0.100
-2.645	-4.88	0.325	0.380	0.093	0.140
-1.214	0.348	0.543	0.650	0.113	0.120
-1.156	1.40	0.560	0.667	0.120	0.160
-0.748	2.68	0.602	0.712	0.146	0.200
-0.455	3.36	0.631	0.746	0.193	0.100
0.232	5.76	0.729	0.848	0.293	0.120
2.16	11.1	0.865	0.956	0.586	0.240
2.50	14.2	0.897	0.971	0.686	0.340

The data shows:

- Variation in true/inferred ability and accuracy by subset → Asking the right question matters!
- Fewer hard examples \rightarrow noisier subset.
- Accuracy difference between best two subjects is not large.
- IRT is well suited to this type of data.

True	IRT	Overall	Easy	Mod	Hard
-3.506	-12.1	0.194	0.218	0.093	0.100
-3.000	-7.61	0.256	0.301	0.066	0.100
-2.645	-4.88	0.325	0.380	0.093	0.140
-1.214	0.348	0.543	0.650	0.113	0.120
-1.156	1.40	0.560	0.667	0.120	0.160
-0.748	2.68	0.602	0.712	0.146	0.200
-0.455	3.36	0.631	0.746	0.193	0.100
0.232	5.76	0.729	0.848	0.293	0.120
2.16	11.1	0.865	0.956	0.586	0.240
2.50	14.2	0.897	0.971	0.686	0.340

IRT Applications: Discounting Bad Examples

What do we see?

 Invalid examples sorted down

IRT Applications: Discounting Bad Examples

What do we see?

- Invalid examples sorted down
- Proportion of invalid examples represented

IRT Applications: Discounting Bad Examples

What do we see?

- Invalid examples sorted down
- Proportion of invalid examples represented
- Valid Hard examples are more discriminating

Why does this matter?

- Noisy examples \rightarrow noisy metrics

Why does this matter?

- Noisy examples \rightarrow noisy metrics
- Noise metrics \rightarrow noisy rankings

Why does this matter?

- Noisy examples \rightarrow noisy metrics
- Noise metrics \rightarrow noisy rankings
- IRT is one way to mitigate the effect of noisy examples by directly modeling them!

• The cost of annotation model responses is high.

- The cost of annotation model responses is high.
- Pre-existing leaderboard data (i.e., response matrix).

- The cost of annotation model responses is high.
- Pre-existing leaderboard data (i.e., response matrix).
- A new set of subjects/models

- The cost of annotation model responses is high.
- Pre-existing leaderboard data (i.e., response matrix).
- A new set of subjects/models
- We want to:

- The cost of annotation model responses is high.
- Pre-existing leaderboard data (i.e., response matrix).
- A new set of subjects/models
- We want to:
 - Minimize annotation cost

- The cost of annotation model responses is high.
- Pre-existing leaderboard data (i.e., response matrix).
- A new set of subjects/models
- We want to:
 - Minimize annotation cost
 - Maximize correlation to ranking if fully annotate

- The cost of annotation model responses is high.
- Pre-existing leaderboard data (i.e., response matrix).
- A new set of subjects/models
- We want to:
 - Minimize annotation cost
 - Maximize correlation to ranking if fully annotate
- Experiment: What method for selecting subset to annotate is best?

IRT Applications: Rank Reliability in Evaluation Metrics

We test this setup with SQuAD leaderboard data:

IRT Applications: Rank Reliability in Evaluation Metrics

IRT Applications: Rank Reliability in Evaluation Metrics

Overall best method: pick item that maximizes Fisher information content, i.e.,

 $egin{aligned} &I_i(heta_j)=\gamma_i^2 p_{ij}(1-p_{ij})\ &Info(i)=\sum_j I_i(heta_j) \end{aligned}$

- Adaptive Language-based Mental Health Assessment with Item-Response Theory (Varadarajan et al., 2023)
- Alternate Evaluation Metrics, e.g., Subject ability θ_j (Lalor et al., 2018)
- Anchor Points: Benchmarking Models with Much Fewer Examples (Vivek et al., 2024)
- tinyBenchmarks: evaluating LLMs with fewer examples (Polo et al., 2024)
- Comparing Test Sets with Item Response Theory (Vania et al., 2021)
- IRT for Efficient Human Evaluation of Chatbots (Sedoc and Ungar, 2020)

- Back in 15 minutes
- Next section: Advanced Topics
References

- Jordan Boyd-Graber and Benjamin Börschinger. 2020. What question answering can learn from trivia nerds. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 7422–7435, Online. Association for Computational Linguistics.
- John P. Lalor, Hao Wu, Tsendsuren Munkhdalai, and Hong Yu. 2018. Understanding deep learning performance through an examination of test set difficulty: A psychometric case study. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 4711–4716, Brussels, Belgium. Association for Computational Linguistics.
- John P. Lalor, Hao Wu, and Hong Yu. 2019. Learning latent parameters without human response patterns: Item response theory with artificial crowds. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 4249–4259, Hong Kong, China. Association for Computational Linguistics.
- Felipe Maia Polo, Lucas Weber, Leshem Choshen, Yuekai Sun, Gongjun Xu, and Mikhail Yurochkin. 2024. tinybenchmarks: evaluating Ilms with fewer examples.
- Pedro Rodriguez, Joe Barrow, Alexander Miseriis Hoyle, John P. Lalor, Robin Jia, and Jordan Boyd-Graber. 2021. Evaluation examples are not equally informative: How should that change NLP leaderboards? In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 4486–4503, Online. Association for Computational Linguistics.
- João Sedoc and Lyle Ungar. 2020. Item response theory for efficient human evaluation of chatbots. In Proceedings of the First Workshop on Evaluation and Comparison of NLP Systems, pages 21–33, Online. Association for Computational Linguistics.
- Clara Vania, Phu Mon Htut, William Huang, Dhara Mungra, Richard Yuanzhe Pang, Jason Phang, Haokun Liu, Kyunghyun Cho, and Samuel R. Bowman. 2021. Comparing test sets with item response theory. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 1141–1158, Online. Association for Computational Linguistics.
- Vasudha Varadarajan, Sverker Sikström, Oscar NE Kjell, and H Andrew Schwartz. 2023. Adaptive language-based mental health assessment with item-response theory. arXiv preprint arXiv:2311.06467.
- Rajan Vivek, Kawin Ethayarajh, Diyi Yang, and Douwe Kiela. 2024. Anchor points: Benchmarking models with much fewer examples. In Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1576–1601, St. Julian's, Malta. Association for Computational Linguistics.

Item Response Theory for NLP EACL2024 Tutorial, 21st March 2024

John P. Lalor, Pedro Rodriguez, João Sedoc, Jose Hernandez-Orallo

https://eacl2024irt.github.io/

Item Response Theory for NLP EACL2024 Tutorial, 21st March 2024 Part 4. Advanced Topics

José Hernández-Orallo^{1,2,3}

¹ VRAIN, Universitat Politècnica de València
 ² Leverhulme Centre for the Future of Intelligence, University of Cambridge
 ³ Centre for the Study of Existential Risk, University of Cambridge

http://josephorallo.webs.upv.es/

Main Limitations of (classical) IRT

LIMITATIONS OF CLASSICAL IRT...

- 1) The models are usually simple and fixed (logistic).
 - Some performance metrics have distributions that are not Bernoulli (right/wrong)
- 2) Consider one dimension only: one ability per subject and one difficulty parameter per item
 - One ability rarely accounts for the full behaviour of a system on general or complex tasks.
- 3) (even Multidimensional IRT models) are **non-hierarchical** (on the items and on the abilities)
 - Compensatory MIRT models introduce effects between the dimensions.
- 4) **Cannot predict for new instances** (only those used in the estimation)
 - They do not have item parameters (we would need the results of other models on that new item).
- 5) Are **populational**
 - In many cases, the notion of population in Al systems is too volatile/arbitrary.

AND EXTENSIONS... AND OTHER APPROACHES

- IRT has many extensions that try to account for 1, 2 and 3 (MIRT, non-logistic models, ...) and partly 4 (LLTM), but other paradigms are needed for 4 and 5.
- Issue 4 is critical in AI (predictability!):

For new instances, we do not know their difficulty and we cannot predict performance!

<u>https://www.predictable-ai.org/</u>, Zhou et al. "Predictable Artificial Intelligence". *arXiv:2310.06167*.

• Issue 5 is critical in AI (circularity, especially in adversarial testing):

The abilities of an AI system depend on the abilities of the other AI systems!

Mehrbakhsh, B., Martínez-Plumed, F., & Hernández-Orallo, J. (2023). Adversarial Benchmark Evaluation Rectified by Controlling for Difficulty. In *ECAI* 2023 (pp. 1696-1703).

Non-logistic IRT

NON-LOGISTIC IRT MODELS

- IRT covers right/wrong outcomes only.
 - Correspond to a Bernoulli distribution: (right/wrong: {0,1} loss).
 - Parameters of the logistic function, with "guess" for chance
 - Other options, sigmoid (erf, Ogive model) or flat (step function, Guttman)
- In classification (items are aggregations or have repetitions)
 - The loss function is Brier score or AUC.
 - Correspond to the Beta distribution: ([0,1] loss)
 - Beta IRT models: with 3 or 4 parameters
- In regression!
 - The loss function is open (MAE/MSE: [0,∞] loss)
 - Correspond to Gamma or some other distributions.
 - Gamma IRT models with 3 parametres (mapping difficulty, discrimination and ability to the Gamma)

Moraes, J. V., Reinaldo, J. T., Prudencio, R. B., & Silva Filho, T. M. (2020). Item Response Theory for Evaluating Regr Algorithms. In 2020 International Joint Conference on Neural Networks (IJCNN) (pp. 1-8). IEEE.

Bock, R. D., & Gibbons, R. D. (2021). *Item response theory*. John Wiley & Sons.

Chen, Y., Silva Filho, T., Prudencio, R. B., Diethe, T., & Flach, P. (2019). β^3 -IRT: A New Item Response Model and its Applications. In*The 22nd International Conference on Artificial Intelligence and Statistics* (pp. 1013-1021). PMLR.

Ferreira-Junior, M., Reinaldo, J. T., Neto, E. A. L., & Prudencio, R. B. (2023). β^4 -IRT: A New β^3 -IRT with Enhanced Discrimination Estimation.*arXiv preprint arXiv:2303.17731*.

ITEM RESPONSE THEORY FOR NLP 7

Multidimensional IRT

ONE DIMENSION IS RARELY ENOUGH

• On many occasions, more than on ability is needed to explain system performance.

Multidimensional IRT models consider several dimensions for the abilities and/or the items

• Ability θ becomes a <u>latent</u> vector and/or difficulty d becomes a <u>latent</u> vector:

$$P(u_i = 1 | \boldsymbol{\theta}_j) = \frac{\mathrm{e}^{\mathbf{a}'_i \boldsymbol{\theta}_j + d_i}}{1 + \mathrm{e}^{\mathbf{a}'_i \boldsymbol{\theta}_j + d_i}}$$

Reckase, M. D. (2006). 18 Multidimensional Item Response Theory. Handbook of statistics, 26, 607-642.

Bonifay, Wes. *Multidimensional item response theory*. Sage Publications, 2019.

ITEM RESPONSE SURFACES : COMPENSATORY

Graphic representations of the compensatory model – item response surface and equiprobable contours for an item with $a_{i1} = 1.5$, $a_{i2} = .5$, and $d_i = .7$.

Reckase, M. D. (2006). 18 Multidimensional Item Response Theory. *Handbook of statistics*, 26, 607-642.

Confusingly, a.k.a. "partially compensatory" ITEM RESPONSE SURFACES : NON-COMPENSATORY

Graphic representation of the partially compensatory model – item response surface and equiprobable contours for an item with $a_{i1} = 1.5$, $a_{i2} = .5$, $b_{i1} = -1$, $b_{i2} = 0$ and $c_i = 0$.

Reckase, M. D. (2006). 18 Multidimensional Item Response Theory. Handbook of statistics, 26, 607-642.

When Difficulty/Demands Are Given

INTRINSIC (OBSERVABLE) DIFFICULTIES

- Frequently, we have intuitions of what makes an instance difficult.
 - "What's 31+26?" -> very easy
 - "What's 39+96?" -> easy
 - "What's 316184915+269435716?" -> hard
 - "What's 11111111+333333333?" -> easy

 $q_1 = #$ digits, $q_2 = carrying$ $q_3 = digit diversity$

- Can we use these K=3 "features" or "characteristics" (q1, q2, q3) as a proxy for difficulty?
 - Do we know how much each of them contributes to difficulty?

LINEAR LOGISTIC TEST MODELS (LLTM)

• For each item *j*, assume item difficulty β_j depends linearly on a series of K <u>observable</u> cognitive components or item characteristics, also known as demands q_{jk}

1

$$\beta_j = \sum_{k=1}^{\kappa} q_{jk} \eta_k$$

• Then, a Rasch (1PL) model simply becomes:

$$P_{ij} = P\left(x_{ij} = 1 | \theta_i, \beta_j, q_{jk}, \eta_k\right) = \frac{\exp\left(\theta_i - \sum_k q_{jk} \eta_k\right)}{1 + \exp\left(\theta_i - \sum_k q_{jk} \eta_k\right)}$$

Fischer, G. H. (2005). "Linear logistic test models," In Encyclopedia of Social Measurement, 2, 505-514.

• The q_{jk} are specified by experts, the parameters η_k are estimated.

LINEAR LOGISTIC TEST MODELS (LLTM)

	Item	CO1	CO2	CO3	CO4	Domain experts think of how many
 Q-matrix 	1	1	0	0	1	reduies and now to laber examples.
	2	0	1	0	1	
	3	0	1	0	1	
	4	0	0	1	1	
	5	0	0	1	0	
 Values can be > 1 	6	1	0	1	0	
	7	0	1	1 0 1 Packages:	Packages: Baghaei, P., &	
	8	0	1	0	0	Kubinger, K. D. (2015).
	9	1	0	0	0	Linear logistic test modeling
	10	0	0	1	1	with R. Practical
	11	0	0	1	0	Assessment, Research,
	12	1	0	1	0	and Evaluation, $20(1)$, 1.

• LLTMs are compared with the Rasch model (it LLTM is significantly worse, then the cognitive demands are not good enough).

HOW TO ELICIT DIFFICULTIES? EXTRINSIC

- The difficulty of an instance is **extrinsic**: depends on its relation to the other instances.
 - EXTRINSIC: A paradigmatic case is the concept of "instance hardness" in classification
 - But some of them do not depend on the models, just on the distribution of data.

Lorena, A. C., Paiva, P. Y., & Prudêncio, R. B. (2023). Trusting my predictions: on the value of Instance-Level analysis. *ACM Computing Surveys*.

HOW TO ELICIT DIFFICULTIES? INTRINSIC

- In some cases, the difficulty of an instance is easy to identify and they are intrinsic.
 - INTRINSIC: The difficulty of an instance doesn't depend on the difficulty of other instances!!!

Zhou et al. "Scaled-up, Shaped-up, but Letting Down? Reliability Fluctuations of Large Language Model Families", in preparation, 2024.

GPT (3, 3.5, 4) on addition problems with difficulty being the mean of #digits (x-axis is deciles)

AUTOMATED DEMAND ANNOTATION IN NLP

- Use "topic modelling" to extract the demands?
- Syntactic and semantic complexity metrics (e.g., Quanteda)?
 - Lexical Diversity: TTR, C, R, CTTR, U, S, K, I, D, Vm, Maas, lgV0, lgeV0, nchar.
 - Readability: ARI, ARI.simple, ARI.NRI, Bormuth.MC, Bormuth.GP, Coleman, Coleman.C2, Coleman.Liau.ECP, Coleman.Liau.grade, Coleman.Liau.short, Dale.Chall, Dale.Chall.old, Dale.Chall.PSK, Danielson.Bryan, Danielson.Bryan.2, Dickes.Steiwer, DRP, ELF, Farr.Jenkins.Paterson, Flesch, Flesch.PSK, Flesch.Kincaid, FOG, FOG.PSK, FOG.NRI, FORCAST, FORCAST.RGL, Fucks, Linsear.Write, LIW, nWS, nWS.2, nWS.3, nWS.4, RIX, Scrabble, SMOG, SMOG.C, SMOG.simple, SMOG.de, Spache, Spache.old, Strain, Traenkle.Bailer, Traenkle.Bailer.2, Wheeler.Smith, meanSentenceLength, mean-WordSyllables.

LLM FOR DEMAND ANNOTATION

• Linguistic Meta-features (annotated by GPT-4):

You must help me annotate the level of {META-FEATURE} of some text. Note that {META-FEATURE DEFINITION}. I will first give you a few examples to illustrate it. Then you will have to determine the level of {META-FEATURE} for the text on a scale from {META-FEATURE SCALE}. {META-FEATURE EXAMPLES} Sentence: {INSTANCE} Level of {META-FEATURE}:"

Yael Moros-Daval "Automated Annotation of Meta-Features for Predicting Language Model Performance in Natural Language Processing Tasks", 2023

Meta-features	Scale and Levels	Examples
Uncertainty	0: complete certainty, 10: complete uncertainty	"The cat is in the house": 1 "She might not do it again": 7 "He may come this afternoon": 3 "We have no clue about where it is": 8 "It is a fact that a square has four sides": 0 "It's impossible to know who will win the lottery": 10 "It'm not sure who will win the election": 8
Negation	0: no negation 1: simple negation 2: double negation 3: negation with quantification 4: very complex negation 	"I'm a rich man" : 0 "She has never had a dog": 1 "It's untrue that all houses without windows do not have any light": 4 "I don't know what I don't know": 2 "The suspect is not in the house": 1 "The car has not been driven by anyone in the team": 3 "Never say never": 2
Time	0: no time expressions 1: simple temporal expressions 2: double temporal expressions 3: complex temporal expressions 	"He came before noon": 1 "The house is blue": 0 "There's a meeting every two weeks": 3 "The train arrived ten minutes after the plane has left": 2
Space	0: no space relationships 1: simple spatial expressions 2: double spatial expressions 3: complex spatial expressions 	"The pen was on the table": 1 "There's no room between the two cars": 2 "Tomorrow is a bank holiday": 0 "The lamp was hanging from two ropes, one attached to the ceiling and the other to the window": 5
Vocabulary	01: Normalised from some aggregate metric of the -log freq of words or something similar as in semantic complexity metrics.	"The ball is big": 0.1219 "Procrastination jeopardises excellence": 0.4235 "The boy must apologise": 0.198 "Ignoramus was an ultracrepidarian reposte": 0.8324
Modality	0: no modality 1: simple modality 2: double modality 	"The woman walked into a bar": 0 "The boy must apologise": 1 "The boy thinks we can't do it" : 3
Theory of Mind	0: no theory of mind 1: simple theory of mind 2: double theory of mind 	"He came to the reception before noon": 0 "She didn't want to buy a car": 1 "The boy thinks we can't do it": 1 "The child feared his parents wanted to punish him": 2
Reasoning	0: no reasoning 1: simple reasoning 2: complex reasoning 	"He tripped because of the step" : 1 "He came before noon with a bag full of presents": 0 "The grass was wet but it was sunny so someone must have watered the plant": 2
Compositionality	1number of levels	"He came before noon": 0 "He came before she arrived": 1 "The man wearing the tall hat came before she arrived": 2 "He came before noon with a bag full of presents": 0.
Anaphora	0: no anaphora 1: simple (one possible referent) 2: complex (>1 possible referents) 	"Kim thinks that he is clever": 1 "While Stuart was telling Susan the news, she laughed at him": 2
Noise	0number of typos per character wrt to the original text with no typos	"The ball is big" : 0 "The bll isbige" : 3/13 "The boy bust apologise": 1/20

COULD WE USE LLTM?

 Tasks (thousands of items) and models (dozens of subjects) from HELM (summer 2023)

Task	Description	Domain
Massive Multitask Language Understanding (MMLU)	Knowledge-intensive question answering across 4 domains: Computer Security, US Foreign Policy, Econometrics and Col- lege Chemistry	Knowledge- intensive QA
OpenbookQA	Commonsense-intensive open book question answering	Knowledge- intensive QA
Legal Support	Fine-grained legal reasoning through reverse entailment	Legal Realistic Reasoning
LSAT	Measure analytical reasoning on the Law School Admission Test	Logical Realistic Reasoning
Bias Benchmark for Question Answering (BBQ)	Social bias in question answering in ambiguous and unambiguous context	Bias
HellaSwag	Commonsense reasoning in question answering	Knowledge- intensive QA
TruthfulQA	Model truthfulness and com- monsense knowledge in ques- tion answering	Knowledge- intensive QA

Liang, P., Bommasani, R., Lee, T., Tsipras, D., Soylu, D., Yasunaga, M., ... & Koreeda, Y. (2022). Holistic evaluation of language models. *arXiv preprint arXiv:2211.09110*.

Creator	Model	Number of Parameters
AI21 Labs	J1-Jumbo v1	178B
AI21 Labs	J1-Large v1	7.5B
AI21 Labs	[1-Grande v1	17B
AI21 Labs	I1-Grande v2 beta	17B
Aleph Alpha	Luminous Base	13B
Aleph Alpha	Luminous Extended	30B
Aleph Alpha	Luminous Supreme	70B
Anthropic	Anthropic-LM v4-s3	52B
BigScience	BLOOM	176B
BigScience	BLOOMZ	176B
BigScience	ТОрр	11B
BigCode	SantaCoder	1.1B
Cohere	Cohere xlarge v20220609	52.4B
Cohere	Cohere large v20220720	13.1B
Cohere	Cohere medium v20220720	6.1B
Cohere	Cohere small v20220720	410M
Cohere	Cohere xlarge v20221108	52.4B
Cohere	Cohere medium v20221108	6.1B
Cohere	Cohere command nightly	6.1B
Cohere	Cohere command nightly	52.4B
DeepMind	Gopher	280B
DeepMind	Chinchilla	70B
EleutherAI	GPT-I	6B
EleutherAI	GPT-NeoX	20B
Google	T5	11B
Google	UL2	20B
Google	Flan-T5	11B
Google	PaLM	540B
HazyResearch	H3	2.7B
Meta	OPT-IML	175B
Meta	OPT-IML	30B
Meta	OPT	175B
Meta	OPT	66B
Meta	Galactica	120B
Meta	Galactica	30B
Microsoft/NVIDIA	TNLG v2	530B
Microsoft/NVIDIA	TNLG v2	6.7B
OpenAI	davinci	175B
OpenAI	curie	6.7B
OpenAI	babbage	1.3B
OpenAI	ada	350M
OpenAI	text-davinci-003	-
OpenAI	text-davinci-002	-
OpenAI	text-davinci-001	-
OpenAI	text-curie-001	-
OpenAI	text-babbage-001	-
OpenAI	text-ada-001	-
OpenAI	code-davinci-002	-
OpenAI	code-davinci-001	-
OpenAI	code-cushman-001	12B
OpenAI	ChatGPT	-
Together	GPT-JT	6B
Together	GPT-NeoXT-Chat-Base	20B
Tsinghua	CodeGen	16B
Tsinghua	GLM	130B
Tsinghua	CodeGeeX	13B
Yandex	YaLM	100B

ITEM RESPONSE THEORY FOR NLP

20

YES, BUT WE DIDN'T (USED XG-BOOST)

Task	Linguistic Meta-features	Traditional Metrics
Abstract Narrative Understanding	0.06	-0.01
BBQ	0.62	0.5
Epistemic Reasoning	0.9	-0.03
Formal Fallacies Syllogisms Negation	0.6	-0.15
Hellaswag	0.02	-0.03
Legal Support	0.3	0.05
LSAT	-0.07	-0.07
MMLU College Chemistry	0.77	0.74
MMLU Computer Security	0.83	0.85
MMLU Econometrics	0.68	0.7
MMLU US Foreign Policy	0.8	0.83
OpenbookQA	-0.04	0.01
TruthfulQA	0.59	0.56

Table 5.1: R² obtained in the test split when predicting difficulty with linguistic meta-features and lexical and readability metrics

YES, BUT WE DIDN'T (USED XG-BOOST)

Task	Linguistic Meta-features	Traditional Metrics
Abstract Narrative Understanding	0.06	-0.01
BBQ	0.62	0.5
Epistemic Reasoning	0.9	-0.03
Formal Fallacies Syllogisms Negation	0.6	-0.15
Hellaswag	0.02	-0.03
Legal Support	0.3	0.05
LSAT	-0.07	-0.07
MMLU College Chemistry	0.77	0.74
MMLU Computer Security	0.83	0.85
MMLU Econometrics	0.68	0.7
MMLU US Foreign Policy	0.8	0.83
OpenbookQA	-0.04	0.01
TruthfulQA	0.59	0.56

Table 5.1: R² obtained in the test split when predicting difficulty with linguistic meta-features and lexical and readability metrics

YES, BUT WE DIDN'T (USED XG-BOOST)

Task	Linguistic Meta-features	Traditional Metrics	Each dot is an instance of MMLU US FP, with average error for all
Abstract Narrative Understanding	0.06	-0.01	models on the x axis and the predicted average error on the y axis
BBQ	0.62	0.5	
Epistemic Reasoning	0.9	-0.03	0.9 -
Formal Fallacies Syllogisms Negation	0.6	-0.15	0.8 -
Hellaswag	0.02	-0.03	
Legal Support	0.3	0.05	
LSAT	-0.07	-0.07	
MMLU College Chemistry	0.77	0.74	
MMLU Computer Security	0.83	0.85	0.4 -
MMLU Econometrics	0.68	0.7	
MMLU US Foreign Policy	0.8		
OpenbookQA	-0.04	0.01	0.2
TruthfulQA	0.59	0.56	0.1 - 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Table 5.1: R² obtained in the test split when predicting difficulty with linguistic meta-features and lexical and readability metrics

dffclt

General Difficulty Models

DATA FOR DIFFICULTY

• Once we have applied IRT or used any other method to estimate the difficulties of the instances, we end up with a dataset like this:

Item	Original Features	Difficulty	Discrim.
#1	What's the capital of France?	-2.5	0.6
#2	What's almost an island?	0.3	0.7
#3	What's the capital of Bhutan?	0.7	0.2
#4	What's frozen water?	-1.8	0.3
#5	Who's your mother's son's mother?	-0.5	0.2
#6	What's brown and sticky?	2.3	-0.3
	<u> </u>	<u> </u>	

Can we predict difficulty (and discrimination) from the examples?

YES, WE CAN

- But we can build a <u>difficulty model</u> from the instance features:
- Better with 1PL models:

Figure 5: (Left) SCC obtained with the 70% of the letter benchmark and the observed difficulties \hbar . (Right) SCC obtained with the test set (30%), using estimated difficulties $\hat{\hbar}$.

Martínez-Plumed, F., Castellano, D., Monserrat-Aranda, C., & Hernández-Orallo, J. (2022, June). When ai difficulty is easy: The explanatory power of predicting IRT difficulty. In *Proceedings of the AAAI Conference on Artificial Intelligence* (Vol. 36, No. 7, pp. 7719-7727).

Predicting Performance Directly: Assessors

JH Orallo, W Schellaert, FM Plumed Training on the Test Set: Mapping the System-Problem Space in AI AAAI 2022

DEFINITION

Conditional probability estimator of the result r for AI system π on situation μ :

$$\hat{R}(r|\pi,\mu) \approx \Pr(R(\pi,\mu)=r)$$

It is trained (and evaluated) on test data:
Using a distribution of situations (instances) μ.
Using a distribution of systems π.

It is applied during deployment, before π does any inference or even starts.

π	μ	r
Resnet, $\theta_1, \theta_2, \dots$	Image3, χ_1 , χ_2 ,	1
Resnet, $\theta_1, \theta_2, \dots$	Image23, χ_1 , χ_2 ,	0
		•••
Inception, θ_1 , θ_2 ,	Image3, χ_1 , χ_2 ,	1
Inception, $\theta_1, \theta_2, \dots$	Image78, χ_1 , χ_2 ,	1
•••	•••	•••

PROBLEM SPACE

We can describe situations or instances with properties $\mu = \langle \chi_1, \chi_2, ... \rangle$.

- Delivery robot in a city with destination $\mu = \langle x, y \rangle$
- π behaves very differently depending on the situation μ.
- Expected result for π differs for different joint distributions Pr(x,y)

SYSTEM SPACE

We can describe systems with properties $\pi = \langle \theta_1, \theta_2, ... \rangle$.

 Hyperparameters, system's operating conditions (e.g., computing resources), developmental states, ...

Key element for an assessor

- Much predictability about one π can be obtained by looking at how other π' behave.
 - \odot Uncertainty estimation or calibration of π without looking at other systems is shortsighted!

(baseline): self-assessment checkmate_in_one (0.94) -0.27 -0.24 abstract narrative ... (0.70) -0.07 temporal_sequences (0.55) cifar10 classification (0.53) reasoning about col... (0.70) unit conversion (0.82) real or fake text (0.53) language identifica... (0.68) arithmetic (0.66) logical deduction (0.56) symbol interpretation (0.49) fact checker (0.63) salient translation... (0.59) tracking shuffled o... (0.56) timedial (0.63) formal fallacies sy... (0.49) intent recognition (0.88) authorship verifica... (0.50) parsinlu qa (0.56) play dialog same or... (0.56) logical fallacy det... (0.53) logic grid puzzle (0.54) which wiki edit (0.52) elementary math qa (0.58) question selection (0.55) intersect geometry (0.75) sports understanding (0.48) goal step wikihow (0.58) dyck languages (0.72) cs algorithms (0.74) presuppositions as nli (0.51) movie dialog same o... (0.47) strategyga (0.61) mnist ascii (0.49) social iga (0.53) winowhy (0.65) discourse marker pr... (0.38) multiemo (0.54) hyperbaton (0.64) bbg lite json (0.56) color (0.40) social support (0.36) vitaminc fact verif... (0.45) navigate (0.50) epistemic reasoning (0.53) metaphor_boolean (0.39) total (0.61) -0.25 0.00

+0.03

+0.03

+0.03

+0.04

+0.05

+0.06

+0.06

+0.07

+0.07

+0.08

+0.08

+0.08

+0.08

+0.09

+0.10

+0.11

+0.11

+0.11

+0.11

+0.13

+0.14

+0.14

+0.18

+0.19

+0.19

+0.21

+0.22

+0.23

+0.26

+0.28

+0.30

+0.30

+0.30

+0.31

+0.34

+0.34

+0.37

+0.17

0.25

Difference in AUROC

+0.37

+0.39

0.50

+0.42

+0.44

+0.47

4

LMs PREDICT LMs

Setup:

Problem space (items):

• BIG-bench evaluation suite (millions of instances)

System space (subjects):

• Validity (correct/incorrect) for 12 LMs (200M to 128B parameters)

Assessor:

Small-ish assessor (60M DeBERTa)

In distribution.

- Total AUROC of 0.61
- Improvement over self-assessment (logprobs)

Schellaert et al. "Validity Predictability Factors in Language Models" (forthcoming)

Measurement Layouts

AAAI2024 Tutorial

"Measurement Layouts for Capability-Oriented Al Evaluation", J. Burden, L. Cheke, J. Hernández-Orallo, M. Tešić, K. Voudouris <u>https://github.com/Kinds-of-Intelligence-CFI/measurement-layout-tutoric</u>

J. Burden et al. "Inferring Capabilities from Task Performance with Bayesian Triangulation", https://arxiv.org/abs/2309.11975.

MORE SOPHISTICATED MODELS

• From performance to capabilities more generally:

GPT (3, 3.5, 4) on addition problems with difficulty being the mean of #digits (x-axis is deciles)

Zhou et al. "Scaled-up, Shaped-up, but Letting Down? Reliability Fluctuations of Large Language Model Families", in preparation, 2024.

MORE SOPHISTICATED DEMANDS

- digits1: The number of digits in the first summand.
- digits2: The number of digits in the second summand.
- min_digits: $min(digits_1, digits_2)$, i.e., the number of digits in the smaller summand.
- harm_mean: $2/(1/digits_1 + 1/digits_2)$, i.e., the harmonic mean of the number of digits in the two summands.
- $art_mean: (digits_1 + digits_2)/2$, i.e., the arithmetic mean of the number of digits in the two summands.
- max_digits: $max(digits_1, digits_2)$, i.e., the number of digits in the larger summand.
- carry: The number of carrying operations required to add the two numbers.

What are some of the things that make the addition of two number 'difficult'?

- Size of the two numbers
- Number of carrying operations
- Can we have lots of carrying operations but the additions is still 'easy'?

SIMPLE MEASUREMENT LAYOUT

HIERARCHICAL MEASUREMENT LAYOUT

PREDICTING PERFORMANCE

• Not only can we get capability profiles, but we can predict well!

The measurement layouts are non-populational. They do not depend on the results of the other models!

Other Modelling Approaches

OTHER METHODS TO EXPLAIN/PREDICT PERFORMANCE

From Games and Al:

Elo-Ranking, TrueSkill (Microsoft)

From Al:

...

Scaling laws

From Psychometrics:

SEM / Hierarchical models (HGLMs, Multi-level IRT).

Factor analysis (next slide)

Minka, T., Cleven, R., & Zaykov, Y. (2018). Trueskill 2: An improved bayesian skill rating system. *Technical Report*.

Schellaert et al. (2024): Scaling the scaling laws. Workshop on scaling laws, EACL.

Ravand, H. (2015). Item response theory using hierarchical generalized linear models. *Practical Assessment, Research, and Evaluation*, *20*(1), 7.

Sulis, I., & Toland, M. D. (2017). Introduction to Multilevel Item Response Theory Analysis: Descriptive and Explanatory Models. The Journal of Early Adolescence, 37(1), 85-128. https://doi.org/10.1177/0272431616642328

			Factor	r loadings	(Freq.)	Factor l	oadings (B	ayesian)
Task	HELM classification	Annotated ability	Factor 1	Factor 2	Factor 3	Factor 1	Factor 2	Factor 3
XSUM	Summarization	Comprehension	0.91	0.05	-0.09		0.84	
HellaSwag	QA	Comprehension	0.88	0.21	-0.04		0.93	
NarrativeQA	QA	Comprehension	0.86	0.25	-0.05		0.68	
CNN.DailyMail	Summarization	Comprehension	0.85	-0.40	0.03		0.47	
IMDB	Sentiment Analysis	Comprehension	0.84	-0.02	-0.33		0.33	
WikiFact	Knowledge	Domain knowledge	0.82	-0.08	0.26		0.78	
OpenbookQA	QA	Reasoning - commonsense	0.80	0.19	0.10		0.93	
NaturalQuestions	QA	Comprehension	0.76	0.11	0.22		0.97	
BoolQ	QA	Comprehension	0.72	0.21	0.19		0.70	
RAFT	Text Classification	Comprehension	0.63	0.13	0.33		0.69	
QuAC	QA	Comprehension	0.60	0.18	0.39		0.74	
TwitterAAE	Language modelling	Language modelling	-0.09	1.00	0.01			0.94
ICE	Language modelling	Language modelling	0.17	0.90	-0.02			0.97
The Pile	Language modelling	Language modelling	0.15	0.88	0.07			0.96
BLiMP	Language modelling	Language modelling	0.03	0.80	-0.09			0.82
TruthfulQA	QA	Domain knowledge	-0.15	-0.06	1.03	1.00		
BBQ	Bias	Reasoning - inductive	-0.02	-0.06	1.01	1.06		
GSM8K	Reasoning	Reasoning - mathematical	0.04	0.02	0.96	0.87		
Synthetic reasoning (NL)	Reasoning	Reasoning - fluid	-0.08	0.02	0.88	0.80		
MATH	Reasoning	Reasoning - mathematical	0.12	0.09	0.86	0.84		
CivilComments	Toxicity Classification	Comprehension	0.11	0.05	0.83	0.67		
Synthetic reasoning (A)	Reasoning	Reasoning - fluid	0.14	0.26	0.74	0.83		
MMLU	QA	Mixed	0.45	-0.13	0.64	0.95		
LegalSupport	Reasoning	Reasoning - inductive	0.47	-0.16	0.48	0.32		
LSAT	Reasoning	Reasoning - fluid	0.02	-0.09	0.46			
bAbI	Reasoning	Reasoning - deductive	0.44	0.35	0.40		0.69	
Dyck	Reasoning	Reasoning - deductive	0.25	0.45	0.28		0.59	

Burnell, R., Hao, H., Conway, A. R., & Orallo, J. H. (2023). Revealing the structure of language model capabilities. *arXiv preprint arXiv:2306.10062*.

POPULATIONAL? INSTANCE-LEVEL?

• Structural Equation Modelling

- Needs a sample of subjects
- Bottom-up inference at the level of tests
- Inference of values
- Arrows represent linear relations

• Measurement Layouts (Bayesian inference)

- Estimate capabilities from the results of one individual
- Bottom-up and top-down inference at instance level.
- Inference of distributions
- Arrows may be any differential function (e.g., logistic)

Question: Are SEMs or other models for just one individual?

MULTIDIMENSIONAL IRT GENERALISED?

• MIRT – Compensatory abilities

"Multidimensional Item Response Theory" (V. Duran's slides)

Fig. 4.9 Item response surface for the partially compensatory model when $a_1 = .7$, $a_2 = 1.1$, $b_1 = -.5$, $b_2 = .5$, and c = .2

- Needs a sample of subjects
- Latent/population difficulties (no given features)
- Fixed model (logistic / beta)

• Measurement Layouts

- Estimate capabilities from the results of one individual
- Looks at the instance features (observable demands)
- Arrows only need be differentiable (beyond logistic)

Question: Degree of compensation for many dimensions and hierarchies?

Approach	Predictive for items	Predictive for systems	Domain Knowledge	System Populational	Abilities	Type of Models
Performance Aggregation / CTT	No	No	No	No	—	Statistical Tendency/Position/Dispersion
Scaling Laws	No	Seen & New	No	Yes	—	Power Laws
Factor Analysis	No	No	No	Yes	≥1	Linear (response)
SEM	No	Seen	Yes	Yes	\geq 1 or hierarchy	Mostly Linear (response)
Traditional IRT (1PL, 2PL, 3PL)	Seen	Seen	No	Yes	1	Logistic/Bernouilli (response)
Beta/Gamma IRT Models,	Seen	Seen	No	Yes	1	Beta (response), Gamma (response),
Multidimensional IRT	Seen	Seen	Partly	Yes	≥1	Logistic (response)
LLTM	Seen & New	Seen	Yes	Yes	1 (≥1 MIRT)	Linear (diff) + Logistic (response)
General Difficulty Model	Seen & New	Seen	No	Yes	≥1	Any machine learning model (diff) + Logistic
Intrinsic Difficulty	Seen & New	Seen	Yes	No	≥1	No model + Logistic
Self-assessment (uncert. est.)	Seen & New	Seen	No	No	—	The own model (mostly classification)
Assessors	Seen & New	Seen & New	No	Either	—	Any Machine Learning Model
Measurement Layouts	Seen & New	Seen & New*	Yes	Either	\geq 1 or hierarchy	Any Bayesian Model if Differentiable

Approach	Predictive for items	Predictive for systems	Domain Knowledge	System Populational	Abilities	Type of Models
Performance Aggregation / CTT	No	No	No	No	—	Statistical Tendency/Position/Dispersion
Scaling Laws	No	Seen & New	No	Yes	—	Power Laws
Factor Analysis	No	No	No	Yes	≥1	Linear (response)
SEM	No	Seen	Yes	Yes	\geq 1 or hierarchy	Mostly Linear (response)
Traditional IRT (1PL, 2PL, 3PL)	Seen	Seen	No	Yes	1	Logistic/Bernouilli (response)
Beta/Gamma IRT Models,	Seen	Seen	No	Yes	1	Beta (response), Gamma (response),
Multidimensional IRT	Seen	Seen	Partly	Yes	≥1	Logistic (response)
LLTM	Seen & New	Seen	Yes	Yes	1 (≥1 MIRT)	Linear (diff) + Logistic (response)
General Difficulty Model	Seen & New	Seen	No	Yes	≥1	Any machine learning model (diff) + Logistic
Intrinsic Difficulty	Seen & New	Seen	Yes	No	≥1	No model + Logistic
Self-assessment (uncert. est.)	Seen & New	Seen	No	No	—	The own model (mostly classification)
Assessors	Seen & New	Seen & New	No	Either	—	Any Machine Learning Model
Measurement Layouts	Seen & New	Seen & New*	Yes	Either	\geq 1 or hierarchy	Any Bayesian Model if Differentiable

Approach	Predictive for items	Predictive for systems	Domain Knowledge	System Populational	Abilities	Type of Models
Performance Aggregation / CTT	No	No	No	No	—	Statistical Tendency/Position/Dispersion
Scaling Laws	No	Seen & New	No	Yes	—	Power Laws
Factor Analysis	No	No	No	Yes	≥1	Linear (response)
SEM	No	Seen	Yes	Yes	\geq 1 or hierarchy	Mostly Linear (response)
Traditional IRT (1PL, 2PL, 3PL)	Seen	Seen	No	Yes	1	Logistic/Bernouilli (response)
Beta/Gamma IRT Models,	Seen	Seen	No	Yes	1	Beta (response), Gamma (response),
Multidimensional IRT	Seen	Seen	Partly	Yes	≥1	Logistic (response)
LLTM	Seen & New	Seen	Yes	Yes	1 (≥1 MIRT)	Linear (diff) + Logistic (response)
General Difficulty Model	Seen & New	Seen	No	Yes	≥1	Any machine learning model (diff) + Logistic
Intrinsic Difficulty	Seen & New	Seen	Yes	No	≥1	No model + Logistic
Self-assessment (uncert. est.)	Seen & New	Seen	No	No	—	The own model (mostly classification)
Assessors	Seen & New	Seen & New	No	Either	—	Any Machine Learning Model
Measurement Layouts	Seen & New	Seen & New*	Yes	Either	\geq 1 or hierarchy	Any Bayesian Model if Differentiable

Approach	Predictive for items	Predictive for systems	Domain Knowledge	System Populational	Abilities	Type of Models
Performance Aggregation / CTT	No	No	No	No	—	Statistical Tendency/Position/Dispersion
Scaling Laws	No	Seen & New	No	Yes	—	Power Laws
Factor Analysis	No	No	No	Yes	≥1	Linear (response)
SEM	No	Seen	Yes	Yes	\geq 1 or hierarchy	Mostly Linear (response)
Traditional IRT (1PL, 2PL, 3PL)	Seen	Seen	No	Yes	1	Logistic/Bernouilli (response)
Beta/Gamma IRT Models,	Seen	Seen	No	Yes	1	Beta (response), Gamma (response),
Multidimensional IRT	Seen	Seen	Partly	Yes	≥1	Logistic (response)
LLTM	Seen & New	Seen	Yes	Yes	1 (≥1 MIRT)	Linear (diff) + Logistic (response)
General Difficulty Model	Seen & New	Seen	No	Yes	≥1	Any machine learning model (diff) + Logistic
Intrinsic Difficulty	Seen & New	Seen	Yes	No	≥1	No model + Logistic
Self-assessment (uncert. est.)	Seen & New	Seen	No	No	—	The own model (mostly classification)
Assessors	Seen & New	Seen & New	No	Either	—	Any Machine Learning Model
Measurement Layouts	Seen & New	Seen & New*	Yes	Either	\geq 1 or hierarchy	Any Bayesian Model if Differentiable

Approach	Predictive for items	Predictive for systems	Domain Knowledge	System Populational	Abilities	Type of Models
Performance Aggregation / CTT	No	No	No	No		Statistical Tendency/Position/Dispersion
Scaling Laws	No	Seen & New	No	Yes	—	Power Laws
Factor Analysis	No	No	No	Yes	≥1	Linear (response)
SEM	No	Seen	Yes	Yes	\geq 1 or hierarchy	Mostly Linear (response)
Traditional IRT (1PL, 2PL, 3PL)	Seen	Seen	No	Yes	1	Logistic/Bernouilli (response)
Beta/Gamma IRT Models,	Seen	Seen	No	Yes	1	Beta (response), Gamma (response),
Multidimensional IRT	Seen	Seen	Partly	Yes	≥1	Logistic (response)
LLTM	Seen & New	Seen	Yes	Yes	1 (≥1 MIRT)	Linear (diff) + Logistic (response)
General Difficulty Model	Seen & New	Seen	No	Yes	≥1	Any machine learning model (diff) + Logistic
Intrinsic Difficulty	Seen & New	Seen	Yes	No	≥1	No model + Logistic
Self-assessment (uncert. est.)	Seen & New	Seen	No	No	—	The own model (mostly classification)
Assessors	Seen & New	Seen & New	No	Either	—	Any Machine Learning Model
Measurement Layouts	Seen & New	Seen & New*	Yes	Either	\geq 1 or hierarchy	Any Bayesian Model if Differentiable

Approach	Predictive for items	Predictive for systems	Domain Knowledge	System Populational	Abilities	Type of Models
Performance Aggregation / CTT	No	No	No	No	—	Statistical Tendency/Position/Dispersion
Scaling Laws	No	Seen & New	No	Yes	—	Power Laws
Factor Analysis	No	No	No	Yes	21	Linear (response)
SEM	No	Seen	Yes	Yes	\geq 1 or hierarchy	Mostly Linear (response)
Traditional IRT (1PL, 2PL, 3PL)	Seen	Seen	No	Yes		Logistic/Bernouilli (response)
Beta/Gamma IRT Models,	Seen	Seen	No	Yes	1	Beta (response), Gamma (response),
Multidimensional IRT	Seen	Seen	Partly	Yes	21	Logistic (response)
LLTM	Seen & New	Seen	Yes	Yes	1 (≥1 MIRT)	Linear (diff) + Logistic (response)
General Difficulty Model	Seen & New	Seen	No	Yes	≥1	Any machine learning model (diff) + Logistic
Intrinsic Difficulty	Seen & New	Seen	Yes	No	≥1	No model + Logistic
Self-assessment (uncert. est.)	Seen & New	Seen	No	No	—	The own model (mostly classification)
Assessors	Seen & New	Seen & New	No	Either	_	Any Machine Learning Model
Measurement Layouts	Seen & New	Seen & New*	Yes	Either	\geq 1 or hierarchy	Any Bayesian Model if Differentiable

The Road Ahead

CHALLENGES

Instance-level data:

For building good predictive models of Al validity, we need evaluation results at the instance level.

Is sharing code open source (github) enough? Re-running the experiments is not feasible/sustainable anymore.

Number/dependency of subjects: Non-populational approaches But they require some domain knowledge

ARTIFICIAL INTELLIGENCE

Rethink reporting of evaluation results in AI

Aggregate metrics and lack of access to results limit understanding

By Ryan Burnell¹, Wout Schellaert², John Burden^{1,3}, Tomer D. Ullman⁴, Fernando Martinez-Plumed², Joshua B. Tenenbaum⁵, Danaja Rutar¹, Lucy G. Cheke^{1,6}, Jascha Sohl-Dickstein⁷, Melanie Mitchell⁸, Douwe Kiela⁹, Murray Shanahan^{10,11}, Ellen M. Voorhees¹², Anthony G. Cohn^{13,14,15,16}, Joel Z. Leibo¹⁰, Jose Hernandez-Orallo^{1,2,3}

rtificial intelligence (AI) systems have begun to be deployed in high-stakes contexts, including autonomous driving and medical diagnosis. In contexts such as these, the consequences of system failures can be devastating. It is therefore vital that researchers and policymakers have a full understanding of the capabilities and weaknesses of AI systems so that they can make informed decisions about where these systems are safe to use and how they might be improved. Unfortunately, current approaches to AI evaluation make it exceedingly difficult to build such an understanding, for two key reasons. First, aggregate metrics make it hard to predict how a system will perform in a particular situation. Second, the instance-by-instance evaluation results that could be used to unpack these aggregate metrics are rarely made available (1). Here, we propose a path forward in which results are presented in more nuanced wavs and instance-by-instance evaluation results are made publicly available.

Across most areas of AI, system evaluations follow a similar structure. A system is first built or trained to perform a particular set of functions. Then, the performance of the system is tested on a set of tasks relevant to the desired functionality of the system. In many areas of AI, evaluations use standardized sets of tasks known as "benchmarks." For each task, the system will be tested on a number of example "instances" of the task. The system would then be given a score for each instance based on its performance, e.g., 1 if it classified an image correctly, or 0 if it

was incorrect. For other systems, the score for each instance might be based on how quickly the system completed its task, the quality of its outputs, or the total reward it obtained. Finally, performance across the various instances and tasks is usually aggregated to a small number of metrics that summarize how well the system performed, such as percentage accuracy.

But aggregate metrics limit our insight into performance in particular situations, making it harder to find system failure points and robustly evaluate system safety. This problem is also worsening as the increasingly broad capabilities of stateof-the-art systems necessitate ever more diverse benchmarks to cover the range of their capabilities. This problem is further exacerbated by a lack of access to the instance-by-instance results underlying the aggregate metrics, making it difficult for researchers and policy-makers to further scrutinize system behavior.

AGGREGATE METRICS

Use of aggregate metrics is understandable. They provide information about system performance "at a glance" and allow for simple comparisons across systems. But aggregate performance metrics obfuscate key information about where systems tend to succeed or fail (2). Take, for example, a system that was trained to classify faces as male or female that achieved classification accuracy of 90% (3). Based on this metric, the system appears highly competent. However, a subsequent breakdown of performance revealed that the system misclassified females with darker skin types a staggering 34.5% of the time, while erring only 0.8% of the time for males with lighter skin types. This example demonstrates how aggregation can make it difficult for policymakers to determine the fairness and safety of AI systems. Compounding this problem, many benchmarks include disparate tasks that are ultimately aggregated together. For example, the Beyond the Imitation Game Benchmark (BIG-bench) for language models includes over 200 tasks that evaluate everything from language understanding to causal reasoning (4). Aggregating across these disparate tasks—as the BIGbench leaderboard does—reduces the rich information in the benchmark to an overall score that is hard to interpret.

It is also easy for aggregation to introduce unwarranted assumptions into the evaluation process. For example, a simple average across tasks implicitly treats every task as equally important—in the case of BIGbench, a sports understanding task has as much bearing on the overall score as a causal reasoning task. These aggregation decisions have huge implications for the conclusions that are drawn about system capabilities, yet are seldom considered carefully or explained. Aggregate metrics depend not only on

the capability of the system but also on the characteristics of the instances used for evaluation. If the gender classification system above were reevaluated by using entirely light-skinned faces, accuracy would skyrocket, even though the system's ability to classify faces has not changed. Aggregate metrics can easily give false impressions about capabilities when a benchmark is not well constructed.

Problems and trade-offs that arise when considering aggregate versus granular data and metrics are not specific to AI, but they are exacerbated by the challenges inherent in AI research and the research practices of the field. For example, machine learning evaluations usually involve randomly splitting data into training, validation, and test sets. An enormous amount of data is reguired to train state-of-the-art systems, so these datasets are often poorly curated and lack the detailed annotation necessary to conduct granular analyses. In addition, the research culture in AI is centered around outdoing the current state-of-the-art performance, as evidenced by the many lea-

136 14 APRIL 2023 • VOL 380 ISSUE 6641

science.org SCIENCE

¹Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge, UK. ²Valencian Research Institute for Artificial Intelligence, Universitat Politècnica de Valencia, València, Spain. ²Centre for the Study of Existential Risk, University of Cambridge, Cambridge, UK. ³Valencian Research Institute for Artificial Intelligence, Universitat Politècnica de Valencia, València, Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, ML ⁴Department of Psychology, University of Cambridge, Cambridge, UK. ³Valencian Research Institute for Artificial Intelligence, UN, ⁴Valencian Rode, MA, USA. ⁴Department of Psychology, University of Cambridge, Cambridge, UK. ⁴Praint emery, Google, Mountainview, CA, USA. ⁴Santa Fe Institute, Santa Fe, NM, USA. ⁴Stanford University, Stanford, CA, USA. ⁴Department of Psychology, University of Cambridge, ML (USA. ⁴Santa Fe Institute, Santa Fe, NM, USA. ⁴Stanford, UNIVERSITY, Stanford, CA, USA. ⁴Department of Computing, Imperial College London, London, UK. ⁴National Institute of Standards and Technology, Cleating, Valence, USA. ⁴Alan Turing Institute, London, UK. ¹⁶Tongji University, Shanghai, China. ⁴Shandong University, Jinan, China. Emain: Ho95/⁴Ceanna cu & Valence, Va

TAKE-AWAYS

- IRT generally applicable if we have instance-level data and #subjects
- If situations are more elaborated or non-populational, there are alternatives.

Instead of aggregating performance, the key idea is to estimate a model of the AI system (e.g., capabilities) so that we can explain/predict performance at the instance level!

THANK YOU!

JOSE H. ORALLO http://josephorallo.webs.upv.es/ jorallo@upv.es

POINTERS

- References: You've been given a reference list...
- Libraries:
- PY-IRT: <u>https://github.com/nd-ball/py-irt/</u>
- flexMIRT, MIRT, Stan, JAGS, Mplus, SPSS
- AAAI2024 Tutorial on Measurement Layouts:
 - <u>https://github.com/Kinds-of-Intelligence-CFI/measurement-layout-tutorial</u>
- Al Evaluation Digest (monthly)
 - <u>https://aievaluation.substack.com/</u>

py-irt 0.5.0

pip install py-irt 🕻

Bayesian IRT models in Python

The AI Evaluation Substack

Home Archive About

Dashboard

In a recent blog post titled "We Need a Science of Evals" the Al alignment-focused research organisation Apollo Research advocates for the establishment...

FEB 23 • AI EVALUATION

Item Response Theory for NLP EACL2024 Tutorial, 21st March 2024

John P. Lalor, Pedro Rodriguez, João Sedoc, Jose Hernandez-Orallo

https://eacl2024irt.github.io/

Conclusion, Recent Work, and Future Directions

- 1. Learned about IRT models
- 2. How to implement IRT models and/or use py-irt
- 3. Showed ways to apply IRT to specific NLP problems
 - 3.1 Annotation Error
 - 3.2 Evaluation
 - 3.3 Training
- 4. Classical IRT is a starting point, but the range of IRT methods is much larger

- 1. Classical IRT is a starting point, but the range of IRT methods is much larger
- 2. Future Directions
 - 2.1 LLMs?
 - 2.2 Multidimensional IRT and Big Benchmarks?
 - 2.3 Predictability?

Recent Work

Do great minds think alike? Investigating Human-AI Complementarity for Question Answering

- Skill/difficulty should be multidimensional, but making it work is difficult (Rodriguez et al., 2022)
- Idea: use BERT-informed embeddings to inform multidim difficulty, etc.
- Compare different proficiencies of humans versus models
- Gor et al. (2024) made it work!

Do great minds think alike? Investigating Human-AI Complementarity for Question Answering

Maharshi Gor 1	Tianyi Zhou 1	Hal Daumé III ^{1,2}	Jordan Boyd-Graber ¹
	¹ University of Mary	land ² Microsof	t Research
	mgor	@cs.umd.edu	

Abstract

This study examines question-answering (QA) abilities across human and AI agents. Our framework CAIMIRA addresses limitations in traditional item response theory, by incorporating multidimensional analysis, identifiability, and content awareness, enabling nuanced comparison of OA agents. Analyzing responses from ~ 30 AI systems and 155 humans over thousands of questions, we identify distinct knowledge domains and reasoning skills where these agents demonstrate differential proficiencies. Humans outperform AI systems in scientific reasoning and understanding nuanced language, while large-scale LLMs like GPT-4 and LLAMA-2-70B excel in retrieving specific factual information. The study identifies key areas for future OA tasks and model development, emphasizing the importance of semantic understanding and scientific reasoning in creating more effective and discriminating benchmarks.

Figure 1: Response Correctness prediction using Agent skills and Question difficulty over relevant latent factors. We list the five latent factors that CAIMRA® discovers, and highlight the relevant ones (green), which contribute to estimating whether an agent will respond to the example question correctly. The agent skills over these relevant factors are highlighted in red boxes.

tion answering, particularly with the new panoply

- 1. Understanding Dataset Difficulty with V-Usable Information (Ethayarajh et al., 2022)
- 2. IRT in Recommender System Benchmarking (Liu et al., 2023)

Structured references on the website!

- Kawin Ethayarajh, Yejin Choi, and Swabha Swayamdipta. 2022. Understanding dataset difficulty with V-usable information. In Proceedings of the 39th International Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pages 5988–6008. PMLR.
- Maharshi Gor, Tianyi Zhou, III Daumé, Hal, and Jordan Boyd-Graber. 2024. Do great minds think alike? investigating human-ai complementarity for question answering.
- Yang Liu, Alan Medlar, and Dorota Glowacka. 2023. What we evaluate when we evaluate recommender systems: Understanding recommender systems' performance using item response theory. In *Proceedings of the 17th ACM Conference on Recommender Systems*, RecSys '23, page 658–670, New York, NY, USA. Association for Computing Machinery.
- Pedro Rodriguez, Phu Mon Htut, John Lalor, and João Sedoc. 2022. Clustering examples in multi-dataset benchmarks with item response theory. In *Proceedings of the Third Workshop on Insights from Negative Results in NLP*, pages 100–112, Dublin, Ireland. Association for Computational Linguistics.

https://forms.gle/rwAhu6ufgcYgioKm6

Web page: http://eacl2024irt.github.io