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Introduction



IRT for NLP

Overview of IRT Applications:

• Dataset Construction

• Model Training

• Evaluation
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Assumptions for IRT + NLP

Basic assumptions of the data and parameterization we have:

• A dataset with items indexed by i .

• A set of subjects indexed by j .

• Responses rij from graded responses of subjects to each item.

• An IRT parameterization, e.g., one with item difficulty βi , discriminability γi , and
ability θj might assume:

p(rij = 1|βi , θj) = 1
1 + e−γi (θj −βi )
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IRT Applications: Example of Model Behavior
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What IRT Yields

Given the previous information, IRT will yield estimates for chosen parameters, i.e.: item
difficulty βi , discriminability γi , and ability θj .

Consider two scenarios:

• What if the dataset is the training data?

• What if the dataset is a test set?
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Improving Model Training



Data set filtering

• AVI: |bi | < τ

• UB: bi < τ

• PCUB: pci < τ

• AVO: |bi | > τ

• LB: bi > τ

• PCLB: pci > τ
Source: Lalor et al. (2019)
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Biggest Differences

Task Label Item Text Difficulty ranking

Humans LSTM NSE

SNLI Con. P: Two dogs playing in snow.
H: A cat sleeps on floor

168 1 5

Ent. P: A girl in a newspaper hat with a bow
is unwrapping an item.
H: The girl is going to find out what is
under the wrapping paper.

55 172 176

SSTB Pos. Only two words will tell you what you
know when deciding to see it: Anthony.
Hopkins.

9 103 110

Neg. ...are of course stultifyingly contrived and
too stylized by half. Still, it gets the job
done–a sleepy afternoon rental.

128 46 41

Source: Lalor et al. (2019)
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Finding Annotation Error



IRT Applications: Finding Annotation Error

Test examples can be: too hard, discriminative, too easy, or erroneous 1

Annotation
Error Too EasyToo Hard Discriminative

Questions

How can we use IRT to identify each example type?

1Boyd-Graber and Börschinger (2020)
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IRT Applications: Finding Annotation Error

What makes examples bad?

• Examples that do not discriminate between good and bad subjects

• Example: Bad label → all models get wrong

• Example: Correctness is a coinflip

• Non-Example: Difficult example few models get correct

• What parameter could identify this?

• We can use IRT discriminability γi to find bad examples!
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IRT Applications: Setup for Finding Annotation Error

Can follow along in notebook! Setup/Assumptions:

• Run a simulation where:

• 10 Subjects, Ability/Skill ∼ U(−4, 4)

• 1000 Items, Difficulty ∼ U(−4, 4)

• Items have a 5% of being invalid

• Responses for valid items: rij = sigmoid(θj − βi) > u, u ∼ U(0, 1)

• Responses for invalid items: rij = u > .5, u ∼ U(0, 1)

Then, train a 3PL IRT model with py-irt
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IRT Applications: 3PL Model
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IRT Applications: Setup for Finding Annotation Error

IRT Parameters
• Item Difficulty: βi ∼ Normal
• Item Discriminability: γi ∼ LogNormal
• Subject Ability θj ∼ Normal

IRT Model

p(rij = 1|βi , γi , θj) = 1
1 + e−γi (θj −βi )

Note:
• Why γi ∼ LogNormal? Following

Vania et al. (2021), forces γi to be
non-negative.

• Other variables are zero centered.
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IRT Applications: Sample Code for Finding Errors

Sample Code

d a t a s e t = Datase t . f r o m _ j s o n l i n e s ( "/tmp/ i r t _ d a t a s e t . j s o n l i n e s " )
c o n f i g = I r t C o n f i g (

model_type= ' t u t o r i a l ' , l o g_eve r y =500 , dropout =.2
)
t r a i n e r = I r t M o d e l T r a i n e r (

c o n f i g=con f i g , data_path=None , d a t a s e t=d a t a s e t
)
t r a i n e r . t r a i n ( epochs =5000 , d e v i c e= ' cuda ' )
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IRT Applications: Simulation Results

Can we distinguish valid from invalid items based on discriminability γi?
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IRT Applications: Finding Annotation Error

In Rodriguez et al. (2021), we used a slightly different model to do this for SQuAD:

Subjects

Items

Responses

Differences
• Discriminability γi could be

negative, which is
inconvenient.

• Feasibility λi .
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IRT Applications: Finding Annotation Error

Plotting IRT parameters:

17



IRT Applications: Finding Annotation Error

Use IRT parameters to find partitions of data with annotation errors

Identifying Bad Examples

QA Evaluation Paradigms Improving Leaderboards Future WorkBackground

Was the example correct?
• Question makes sense
• Answer is correct
• No ambiguity
• …

If the example is wrong, then why?
• It is “Wrong/Flawed” because it “Explanation”

Example:
One low difficulty questionwas wrong, because although the label says it is not answerable, it is answerable

18



IRT Applications: Finding Annotation Error

Use IRT parameters to find partitions of data with annotation errors
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Things to note:

• Negative discriminability identifies errors
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IRT Applications: Finding Annotation Error

Example of bad example identified by IRT
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Evaluation Metrics



IRT Applications: Evaluation Metrics

Simple Idea: Instead of accuracy, use subject ability θj to rank.
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IRT Applications: Evaluation Metrics Example

Suppose the following:

• 10 Subjects, similar setup as before

• As before, 1,000 Test Examples

• A set of 800 easy examples ∼ U(−4, 0), Validity Rate 95%

• A set of 150 moderate examples ∼ U(0, 3), Validity Rate 90%

• A set of 50 hard examples ∼ U(3, 4), Validity Rate 80%
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IRT Applications: Evaluation Metrics Example

In table we show:
• Subjects sorted by True Ability

• IRT Inferred Ability
• Accuracy:

• Overall
• Easy subset
• Moderate subset
• Hard subset

• What does the data show?

Ability Accuracy

True IRT Overall Easy Mod Hard

-3.506 -12.1 0.194 0.218 0.093 0.100
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IRT Applications: Evaluation Metrics Example

The data shows:
• Variation in true/inferred

ability and accuracy by subset
→ Asking the right question
matters!

• Fewer hard examples →
noisier subset.

• Accuracy difference between
best two subjects is not large.

• IRT is well suited to this type
of data.

Ability Accuracy

True IRT Overall Easy Mod Hard

-3.506 -12.1 0.194 0.218 0.093 0.100
-3.000 -7.61 0.256 0.301 0.066 0.100
-2.645 -4.88 0.325 0.380 0.093 0.140
-1.214 0.348 0.543 0.650 0.113 0.120
-1.156 1.40 0.560 0.667 0.120 0.160
-0.748 2.68 0.602 0.712 0.146 0.200
-0.455 3.36 0.631 0.746 0.193 0.100
0.232 5.76 0.729 0.848 0.293 0.120
2.16 11.1 0.865 0.956 0.586 0.240
2.50 14.2 0.897 0.971 0.686 0.340
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IRT Applications: Discounting Bad Examples

What do we see?
• Invalid examples

sorted down

• Proportion of invalid
examples represented

• Valid Hard examples
are more
discriminating
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IRT Applications: Discounting Bad Examples

Why does this matter?

• Noisy examples → noisy metrics

• Noise metrics → noisy rankings

• IRT is one way to mitigate the effect of noisy examples by directly modeling them!
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IRT Applications: Rank Reliability in Evaluation Metrics

In Rodriguez et al. (2021), we examined a case where:

• The cost of annotation model responses is high.

• Pre-existing leaderboard data (i.e., response matrix).

• A new set of subjects/models

• We want to:

• Minimize annotation cost

• Maximize correlation to ranking if fully annotate

• Experiment: What method for selecting subset to annotate is best?
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We test this setup with SQuAD leaderboard data:

79

Annotation Efficiency Experiment

Dev Questions: ~10K

Test Questions: ~10K

Test Model Ranking

N + K Subjects

N Subjects (80%)

K Subjects (20%)

1

For M in [16, 32, 64…, ~10K]2

Iteratively Choose M items according to Sampling Method 

For Sampling Method in [Random, Diff, Disc, Disc + Diff, Info]

Compute Correlation to Test Ranks

3

4

5

QA Evaluation Paradigms Improving Leaderboards Future WorkBackground 28
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Figure 4: Compared to the final ranking over a large test set, how well does a small test set correlate? The
left shows correlation between mutually exclusive development set samples and the right between development
samples and the full test set. In both experiments (panes), ranking systems by IRT ability is more stable—across all
sample sizes—than mean accuracy and thus more reliable (Kendall’s rank correlation is higher). Bands show 95%
confidence intervals of rank correlations across ten trials per sample size.
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Figure 5: Suppose we need to cold start and collect
annotations for a new subject: what order would most
rapidly increase correlation to the full test data? As we
expect, the correlations eventually converge, but with
little data, IRT has better correlation than other methods.
We suspect that the IRT information underperforms early
on when the subject ability estimate is unstable.

two.12 We propose that items should be selected ac-
cording to their Fisher information content (Weiss,
1982)

Ii(✓j) =
(p0ij)

2

pij(1 � pij)
= �2

i pij(1 � pij) (2)

as derived by Lord et al. (1968, p. 70).
Intuitively, if we do not yet know the true skill ✓j ,

we should pick items whose expected response we
are most uncertain about. Our uncertainty (entropy)
is maximized when the likelihood of a correct re-

12We train an IRT-disc model to simplify sampling (e.g.,
avoiding a tradeoff between feasibility and discriminability).

sponse pij is the same as the likelihood of an in-
correct response 1 � pij , which corresponds to the
maximal value of Ii(✓j); it is also sensible this
value increases as discriminability �i increases.

To infer the maximally informative items, we
estimate the ability ✓j of each subject using the
currently selected items, use the ability to compute
the information of each yet-to-be-annotated item
for each subject, and then aggregate the informa-
tiveness

Info(i) =
X

j

Ii(✓j) (3)

by item i summed over subjects j. This approach
is similar to uncertainty sampling and reduces to
it for the IRT-base model (Lewis and Gale, 1994).
We initially seed with the twenty-five most discrim-
inative items (details in Appendix D).

Like computerized adaptive testing (Moreno
et al., 1984), Figure 5 shows that at lower sample
sizes three of the IRT sampling methods are bet-
ter than random sampling—difficulty does worse.
The other IRT methods have comparable correla-
tion. Thus, by using IRT, DAD can both improve
rankings and guide annotation.

5 Qualitative Insights on Leaderboards

DAD also helps qualitative analysis of items and
subjects. First, IRT identifies overfitting and gener-
alizes partitioning datasets by difficulty. Then we
show that—like in educational testing—IRT identi-
fies good and bad items.

Overall best method: pick
item that maximizes
Fisher information
content, i.e.,

Ii(θj) = γ2
i pij(1 − pij)

Info(i) =
∑

j
Ii(θj)
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tion. Thus, by using IRT, DAD can both improve
rankings and guide annotation.
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subjects. First, IRT identifies overfitting and gener-
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Additional Work

• Adaptive Language-based Mental Health Assessment with Item-Response
Theory (Varadarajan et al., 2023)

• Alternate Evaluation Metrics, e.g., Subject ability θj (Lalor et al., 2018)

• Anchor Points: Benchmarking Models with Much Fewer Examples (Vivek et al.,
2024)

• tinyBenchmarks: evaluating LLMs with fewer examples (Polo et al., 2024)

• Comparing Test Sets with Item Response Theory (Vania et al., 2021)

• IRT for Efficient Human Evaluation of Chatbots (Sedoc and Ungar, 2020)
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Break!

• Back in 15 minutes

• Next section: Advanced Topics
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